|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: md_mt5_0109 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# md_mt5_0109 |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4790 |
|
- Bleu: 0.457 |
|
- Gen Len: 18.9295 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| |
|
| 13.8417 | 1.0 | 975 | 2.6438 | 0.563 | 15.6487 | |
|
| 2.8117 | 2.0 | 1950 | 1.4148 | 0.891 | 17.2223 | |
|
| 1.8883 | 3.0 | 2925 | 1.0693 | 0.401 | 18.7582 | |
|
| 1.5248 | 4.0 | 3900 | 0.8703 | 0.4583 | 18.8508 | |
|
| 1.3116 | 5.0 | 4875 | 0.7483 | 0.4651 | 18.8856 | |
|
| 1.1617 | 6.0 | 5850 | 0.6783 | 0.4542 | 18.9005 | |
|
| 1.0636 | 7.0 | 6825 | 0.6243 | 0.459 | 18.9054 | |
|
| 0.9928 | 8.0 | 7800 | 0.5869 | 0.4707 | 18.9038 | |
|
| 0.9272 | 9.0 | 8775 | 0.5536 | 0.4563 | 18.9031 | |
|
| 0.8926 | 10.0 | 9750 | 0.5282 | 0.4606 | 18.9177 | |
|
| 0.8568 | 11.0 | 10725 | 0.5091 | 0.4577 | 18.9226 | |
|
| 0.8341 | 12.0 | 11700 | 0.4964 | 0.4482 | 18.9259 | |
|
| 0.8176 | 13.0 | 12675 | 0.4867 | 0.4539 | 18.9262 | |
|
| 0.806 | 14.0 | 13650 | 0.4812 | 0.4576 | 18.9264 | |
|
| 0.7945 | 15.0 | 14625 | 0.4790 | 0.457 | 18.9295 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|