BucketOfFish's picture
Upload model
8269eca
import timm
import torch
from transformers import PreTrainedModel
from timm.models.resnet import BasicBlock, Bottleneck, ResNet
import custom_configuration
BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck}
class ResnetModel(PreTrainedModel):
config_class = custom_configuration.ResnetConfig # not necessary unless you want to register model with auto classes
def __init__(self, config):
super().__init__(config)
block_layer = BLOCK_MAPPING[config.block_type]
self.model = ResNet(
block_layer,
config.layers,
num_classes=config.num_classes,
in_chans=config.input_channels,
cardinality=config.cardinality,
base_width=config.base_width,
stem_width=config.stem_width,
stem_type=config.stem_type,
avg_down=config.avg_down,
)
def forward(self, tensor):
return self.model.forward_features(tensor)
class ResnetModelForImageClassification(PreTrainedModel):
config_class = custom_configuration.ResnetConfig # not necessary unless you want to register model with auto classes
def __init__(self, config):
super().__init__(config)
block_layer = BLOCK_MAPPING[config.block_type]
self.model = ResNet(
block_layer,
config.layers,
num_classes=config.num_classes,
in_chans=config.input_channels,
cardinality=config.cardinality,
base_width=config.base_width,
stem_width=config.stem_width,
stem_type=config.stem_type,
avg_down=config.avg_down,
)
def forward(self, tensor, labels=None):
logits = self.model(tensor)
if labels is not None:
loss = torch.nn.cross_entropy(logits, labels)
return {"loss": loss, "logits": logits} # this form, with a loss key, is usable by the Trainer class
return {"logits": logits}
if __name__ == "__main__":
resnet50d_config = custom_configuration.ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True)
resnet50d = ResnetModelForImageClassification(resnet50d_config)
# resnet50d.save_pretrained("resnet50d")
# resnet50d.push_to_hub("resnet50d")
# transfer weights from pretrained model
pretrained_model = timm.create_model("resnet50d", pretrained=True)
resnet50d.model.load_state_dict(pretrained_model.state_dict())