import timm import torch from transformers import PreTrainedModel from timm.models.resnet import BasicBlock, Bottleneck, ResNet import custom_configuration BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck} class ResnetModel(PreTrainedModel): config_class = custom_configuration.ResnetConfig # not necessary unless you want to register model with auto classes def __init__(self, config): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, ) def forward(self, tensor): return self.model.forward_features(tensor) class ResnetModelForImageClassification(PreTrainedModel): config_class = custom_configuration.ResnetConfig # not necessary unless you want to register model with auto classes def __init__(self, config): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, ) def forward(self, tensor, labels=None): logits = self.model(tensor) if labels is not None: loss = torch.nn.cross_entropy(logits, labels) return {"loss": loss, "logits": logits} # this form, with a loss key, is usable by the Trainer class return {"logits": logits} if __name__ == "__main__": resnet50d_config = custom_configuration.ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True) resnet50d = ResnetModelForImageClassification(resnet50d_config) # resnet50d.save_pretrained("resnet50d") # resnet50d.push_to_hub("resnet50d") # transfer weights from pretrained model pretrained_model = timm.create_model("resnet50d", pretrained=True) resnet50d.model.load_state_dict(pretrained_model.state_dict())