|
import torch |
|
import torch.nn as nn |
|
import random |
|
|
|
class Vocab: |
|
def __init__(self, node_dict, nodeindex_dict, edge_dict, edge_decode_dict): |
|
self.node_dict = node_dict |
|
self.nodeindex_dict = nodeindex_dict |
|
self.edge_dict = edge_dict |
|
self.edge_decode_dict = edge_decode_dict |
|
|
|
def __call__(self, x): |
|
if isinstance(x, list): |
|
return [self.__call__(_) for _ in x] |
|
else: |
|
return self.fetch(x) |
|
|
|
def fetch(self, x): |
|
s, t = x.split("->") |
|
return self.edge_dict[s][t] if s in self.edge_dict and t in self.edge_dict[s] else self.edge_dict["<unk>"]["<unk>"] |
|
|
|
@classmethod |
|
def from_node_dict(cls, dictname): |
|
nodeindex_dict = dict() |
|
edge_dict = dict() |
|
edge_decode_dict = dict() |
|
for s in dictname: |
|
nodeindex_dict[dictname[s]] = s |
|
edge_dict[s] = {} |
|
for t in dictname: |
|
edge_dict[s][t] = (dictname[s], dictname[t]) |
|
edge_decode_dict[(dictname[s], dictname[t])] = "->".join([s, t]) |
|
return cls(None, nodeindex_dict, edge_dict, edge_decode_dict) |
|
|
|
@classmethod |
|
def from_edge(cls, filename): |
|
edge_dict = dict() |
|
edge_dict["<unk>"] = {} |
|
edge_dict["<unk>"]["<unk>"] = (0, 0) |
|
edge_decode_dict = dict() |
|
with open(filename) as f: |
|
for line in f: |
|
s, t = line.strip().split("->") |
|
if s not in edge_dict: |
|
i = len(edge_dict) |
|
j = 0 |
|
edge_dict[s] = dict() |
|
else: |
|
i = edge_dict[s][list(edge_dict[s].keys())[0]][0] |
|
j = len(edge_dict[s]) |
|
edge_dict[s][t] = (i, j) |
|
edge_decode_dict[(i, j)] = "->".join([s, t]) |
|
return cls(None, edge_dict, edge_decode_dict) |
|
|
|
def get_neighbor_of_edge(self, key, k): |
|
s, t = key.split("->") |
|
_s = s if s in self.edge_dict else "<unk>" |
|
ret = ["->".join([_s, _t]) for _t in self.edge_dict[_s].keys() if _t != t] |
|
random.shuffle(ret) |
|
return ret[:k] if k != -1 else ret |
|
|
|
def get_neighbor_of_node(self, key, k): |
|
s = self.nodeindex_dict[key] |
|
ret = ["->".join([s, _t]) for _t in self.edge_dict[s].keys() if _t != s] |
|
random.shuffle(ret) |
|
return ret[:k] if k != -1 else ret |
|
|
|
def get_neighbor_of_edge_broadcast(self, key, edges, k=100): |
|
s, t = key.split("->") |
|
_ret = [_t for _t in self.edge_dict[s].keys() if _t != t] |
|
random.shuffle(_ret) |
|
ret = [] |
|
for edge in edges: |
|
s, t = edge.split("->") |
|
ret += [["->".join([s, _t]) for _t in _ret[:k]]] |
|
return ret |
|
|
|
@staticmethod |
|
def to_path(tokens): |
|
path = [] |
|
for left, right in zip(tokens[:-1], tokens[1:]): |
|
path.append("->".join([left, right])) |
|
return path |
|
|
|
def get_edge_of_node(self, key): |
|
return list(self.edge_dict[key].values()) |
|
|
|
def decode(self, x): |
|
return self.edge_decode_dict[x] |
|
|
|
|
|
class BraLM(nn.Module): |
|
def __init__(self, hidden_size): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.network = nn.ParameterList() |
|
self.bias = nn.ParameterList() |
|
self.sigmoid = nn.GELU() |
|
self.positions = nn.Parameter(torch.ones(1, 512, 1)) |
|
self.device = None |
|
|
|
def prepare_network(self, vocab): |
|
for s in vocab.edge_dict: |
|
self.network.append(nn.Parameter(torch.randn(len(vocab.edge_dict[s]), self.hidden_size, self.hidden_size).uniform_(-0.5, 0.5))) |
|
self.bias.append(nn.Parameter(torch.randn(len(vocab.edge_dict[s]), 1, self.hidden_size).uniform_(-0.5, 0.5))) |
|
|
|
def _network(self, x, y): |
|
return self.network[x][y] |
|
|
|
def to_device(self, device): |
|
self.network.to(device) |
|
self.positions.data = self.positions.data.to(device) |
|
self.device = device |
|
|
|
@staticmethod |
|
def _reshape12(x): |
|
return x.reshape(-1, x.size(-2), x.size(-1)) |
|
|
|
def get_positional_encoding(self, seq_len, d_model): |
|
position = torch.arange(0, seq_len).reshape(-1, 1) |
|
div_term = 10000.0 ** (torch.arange(0, d_model, 2) / d_model) |
|
position_encoding = torch.zeros(seq_len, d_model) |
|
position_encoding[:, 0::2] = torch.sin(position * div_term) |
|
position_encoding[:, 1::2] = torch.cos(position * div_term) |
|
return position_encoding.unsqueeze(0).to(self.device) |
|
|
|
|
|
def get_initial_tensor(self, batch_size): |
|
energy_tensor = torch.ones(batch_size, 1, self.hidden_size) / self.hidden_size |
|
return energy_tensor.to(self.device) |
|
|
|
|
|
def decode(self, start, vocab, max_new_tokens=16, do_sample=False, temperature=1): |
|
ret = [] |
|
pe = self.get_positional_encoding(512, self.hidden_size) |
|
for i, pair in enumerate(start): |
|
if i == 0: |
|
energy_tensor = self.get_initial_tensor(batch_size=1).squeeze(0) |
|
else: |
|
energy_tensor = (energy_cache * self.positions[:, :i, :].softmax(1)).sum(1, keepdim=True).squeeze(0) |
|
w = self._network(pair[0], pair[1]).to(self.device) |
|
b = self.bias[pair[0]][pair[1]].to(self.device) |
|
|
|
energy_tensor = self.sigmoid(energy_tensor.mm(w) + b + pe.squeeze(0)[i]) |
|
if i == 0: |
|
energy_cache = energy_tensor |
|
else: |
|
energy_cache = torch.cat([energy_cache, energy_tensor], dim=0) |
|
ret += [pair] |
|
x = pair[1] |
|
prev_i = len(start) |
|
|
|
for i in range(max_new_tokens): |
|
candidates = vocab(vocab.get_neighbor_of_node(x, -1)) |
|
all_w = torch.cat([self._network(z[0], z[1]).unsqueeze(0) for z in candidates], dim=0).to(self.device) |
|
all_b = torch.cat([self.bias[z[0]][z[1]].unsqueeze(0) for z in candidates], dim=0).to(self.device) |
|
|
|
curr_i = prev_i + i |
|
energy_tensor = (energy_cache * self.positions.squeeze(0)[:curr_i, :].softmax(0)).sum(0, keepdim=True) |
|
expand_energy_tensor = energy_tensor.unsqueeze(0).repeat(all_w.size(0), 1, 1) |
|
|
|
nxt_energy_tensor = self.sigmoid(expand_energy_tensor.bmm(all_w)+all_b+pe[:,i]) |
|
|
|
energy = nxt_energy_tensor.norm(2, (-2,-1)) |
|
|
|
probs = torch.softmax(energy, dim=-1) |
|
if temperature > 0: |
|
probs = probs / temperature |
|
if do_sample: |
|
index = torch.multinomial(probs, 1).item() |
|
else: |
|
index = probs.argmax(-1).item() |
|
|
|
y = candidates[index][-1] |
|
ret += [(x, y)] |
|
|
|
energy_tensor = nxt_energy_tensor[index, :, :] |
|
x = y |
|
|
|
energy_cache = torch.cat([energy_cache, energy_tensor], dim=0) |
|
|
|
return ret |