File size: 6,836 Bytes
7d2abd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import torch.nn as nn
import random

class Vocab:
    def __init__(self, node_dict, nodeindex_dict, edge_dict, edge_decode_dict):
        self.node_dict = node_dict
        self.nodeindex_dict = nodeindex_dict    
        self.edge_dict = edge_dict
        self.edge_decode_dict = edge_decode_dict

    def __call__(self, x):
        if isinstance(x, list):
            return [self.__call__(_) for _ in x]
        else:
            return self.fetch(x)

    def fetch(self, x):
        s, t = x.split("->")
        return self.edge_dict[s][t] if s in self.edge_dict and t in self.edge_dict[s] else self.edge_dict["<unk>"]["<unk>"]

    @classmethod
    def from_node_dict(cls, dictname):
        nodeindex_dict = dict()
        edge_dict = dict()
        edge_decode_dict = dict()
        for s in dictname:
            nodeindex_dict[dictname[s]] = s
            edge_dict[s] = {}
            for t in dictname:
                edge_dict[s][t] = (dictname[s], dictname[t])
                edge_decode_dict[(dictname[s], dictname[t])] = "->".join([s, t])
        return cls(None, nodeindex_dict, edge_dict, edge_decode_dict)

    @classmethod
    def from_edge(cls, filename):
        edge_dict = dict()
        edge_dict["<unk>"] = {}
        edge_dict["<unk>"]["<unk>"] = (0, 0)
        edge_decode_dict = dict()
        with open(filename) as f:
            for line in f:
                s, t = line.strip().split("->")
                if s not in edge_dict:
                    i = len(edge_dict)
                    j = 0
                    edge_dict[s] = dict()
                else:
                    i = edge_dict[s][list(edge_dict[s].keys())[0]][0]
                    j = len(edge_dict[s])
                edge_dict[s][t] = (i, j)
                edge_decode_dict[(i, j)] = "->".join([s, t])
        return cls(None, edge_dict, edge_decode_dict)

    def get_neighbor_of_edge(self, key, k):
        s, t = key.split("->")
        _s = s if s in self.edge_dict else "<unk>"
        ret = ["->".join([_s, _t]) for _t in self.edge_dict[_s].keys() if _t != t]
        random.shuffle(ret)
        return ret[:k] if k != -1 else ret

    def get_neighbor_of_node(self, key, k):
        s = self.nodeindex_dict[key]
        ret = ["->".join([s, _t]) for _t in self.edge_dict[s].keys() if _t != s]
        random.shuffle(ret)
        return ret[:k] if k != -1 else ret
    
    def get_neighbor_of_edge_broadcast(self, key, edges, k=100):
        s, t = key.split("->")
        _ret = [_t for _t in self.edge_dict[s].keys() if _t != t]
        random.shuffle(_ret)
        ret = []
        for edge in edges:
            s, t = edge.split("->")
            ret += [["->".join([s, _t]) for _t in _ret[:k]]]
        return ret

    @staticmethod
    def to_path(tokens):
        path = []
        for left, right in zip(tokens[:-1], tokens[1:]):
            path.append("->".join([left, right]))
        return path

    def get_edge_of_node(self, key):
        return list(self.edge_dict[key].values())

    def decode(self, x):
        return self.edge_decode_dict[x]
    

class BraLM(nn.Module):
    def __init__(self, hidden_size):
        super().__init__()
        self.hidden_size = hidden_size
        self.network = nn.ParameterList()
        self.bias = nn.ParameterList()
        self.sigmoid = nn.GELU()
        self.positions = nn.Parameter(torch.ones(1, 512, 1))
        self.device = None

    def prepare_network(self, vocab):
        for s in vocab.edge_dict:
            self.network.append(nn.Parameter(torch.randn(len(vocab.edge_dict[s]), self.hidden_size, self.hidden_size).uniform_(-0.5, 0.5)))
            self.bias.append(nn.Parameter(torch.randn(len(vocab.edge_dict[s]), 1, self.hidden_size).uniform_(-0.5, 0.5)))

    def _network(self, x, y):
        return self.network[x][y]

    def to_device(self, device):
        self.network.to(device)
        self.positions.data = self.positions.data.to(device)
        self.device = device

    @staticmethod
    def _reshape12(x):
        return x.reshape(-1, x.size(-2), x.size(-1))

    def get_positional_encoding(self, seq_len, d_model):
        position = torch.arange(0, seq_len).reshape(-1, 1)
        div_term = 10000.0 ** (torch.arange(0, d_model, 2) / d_model)
        position_encoding = torch.zeros(seq_len, d_model)
        position_encoding[:, 0::2] = torch.sin(position * div_term)
        position_encoding[:, 1::2] = torch.cos(position * div_term)
        return position_encoding.unsqueeze(0).to(self.device)


    def get_initial_tensor(self, batch_size):
        energy_tensor = torch.ones(batch_size, 1, self.hidden_size) / self.hidden_size
        return energy_tensor.to(self.device)


    def decode(self, start, vocab, max_new_tokens=16, do_sample=False, temperature=1):
        ret = []
        pe = self.get_positional_encoding(512, self.hidden_size)
        for i, pair in enumerate(start):
            if i == 0:
                energy_tensor = self.get_initial_tensor(batch_size=1).squeeze(0)
            else:
                energy_tensor = (energy_cache * self.positions[:, :i, :].softmax(1)).sum(1, keepdim=True).squeeze(0)
            w = self._network(pair[0], pair[1]).to(self.device)
            b = self.bias[pair[0]][pair[1]].to(self.device)

            energy_tensor = self.sigmoid(energy_tensor.mm(w) + b + pe.squeeze(0)[i])
            if i == 0:
                energy_cache = energy_tensor
            else:
                energy_cache = torch.cat([energy_cache, energy_tensor], dim=0)
            ret += [pair]
        x = pair[1]
        prev_i = len(start)

        for i in range(max_new_tokens):
            candidates = vocab(vocab.get_neighbor_of_node(x, -1))
            all_w = torch.cat([self._network(z[0], z[1]).unsqueeze(0) for z in candidates], dim=0).to(self.device)
            all_b = torch.cat([self.bias[z[0]][z[1]].unsqueeze(0) for z in candidates], dim=0).to(self.device)

            curr_i = prev_i + i
            energy_tensor = (energy_cache * self.positions.squeeze(0)[:curr_i, :].softmax(0)).sum(0, keepdim=True)
            expand_energy_tensor = energy_tensor.unsqueeze(0).repeat(all_w.size(0), 1, 1)

            nxt_energy_tensor = self.sigmoid(expand_energy_tensor.bmm(all_w)+all_b+pe[:,i])

            energy = nxt_energy_tensor.norm(2, (-2,-1))

            probs = torch.softmax(energy, dim=-1)
            if temperature > 0:
                probs = probs / temperature
            if do_sample:
                index = torch.multinomial(probs, 1).item()
            else:
                index = probs.argmax(-1).item()

            y = candidates[index][-1]
            ret += [(x, y)]

            energy_tensor = nxt_energy_tensor[index, :, :]
            x = y

            energy_cache = torch.cat([energy_cache, energy_tensor], dim=0)

        return ret