|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:2818353 |
|
- loss:CachedMultipleNegativesRankingLoss |
|
base_model: answerdotai/ModernBERT-base |
|
widget: |
|
- source_sentence: واش كا يحبس هاد الطوبيس في شارع ستونر؟ |
|
sentences: |
|
- '{''ar'': ''هل هذه الحافلة تتوقف في شارع أستونر ؟''}' |
|
- tachicart/mo_darija_merged |
|
- tachicart/mo_darija_merged |
|
- source_sentence: العمال تما يقدرو يبدلو ليك الدولار بالفيتشات ديال الكازينو. مشينا؟ |
|
sentences: |
|
- tachicart/mo_darija_merged |
|
- tachicart/mo_darija_merged |
|
- '{''ar'': ''يستطيع الصرافون أن يغيروا دولاراتك من أجل بقشيش الكازينو . هل نذهب |
|
؟''}' |
|
- source_sentence: واخا توريني شي كبوط مضاد للماء؟ |
|
sentences: |
|
- tachicart/mo_darija_merged |
|
- '{''ar'': ''هل لك أن ترنى معطفاً ضد الماء ؟''}' |
|
- tachicart/mo_darija_merged |
|
- source_sentence: فين كاين البلاطو رقم خمسة؟ |
|
sentences: |
|
- tachicart/mo_darija_merged |
|
- tachicart/mo_darija_merged |
|
- '{''ar'': ''أين الرصيف رقم خمسة ؟''}' |
|
- source_sentence: شحال للمطار؟ |
|
sentences: |
|
- tachicart/mo_darija_merged |
|
- tachicart/mo_darija_merged |
|
- '{''ar'': ''كم سأدفع للوصول إلى المطار ؟''}' |
|
datasets: |
|
- atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
--- |
|
|
|
# SentenceTransformer based on answerdotai/ModernBERT-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [al-atlas-moroccan-darija-pretraining-dataset](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 5756c58a31a2478f9e62146021f48295a92c3da5 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [al-atlas-moroccan-darija-pretraining-dataset](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("BounharAbdelaziz/ModernBERT-basemoroccan-arabic-epoch-2lr-0.0005batch-32") |
|
# Run inference |
|
sentences = [ |
|
'شحال للمطار؟', |
|
'tachicart/mo_darija_merged', |
|
"{'ar': 'كم سأدفع للوصول إلى المطار ؟'}", |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### al-atlas-moroccan-darija-pretraining-dataset |
|
|
|
* Dataset: [al-atlas-moroccan-darija-pretraining-dataset](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset) at [6668961](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset/tree/66689612b03f0d7a9528bf74ea30782dd2976569) |
|
* Size: 2,818,353 training samples |
|
* Columns: <code>text</code>, <code>dataset_source</code>, and <code>metadata</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | text | dataset_source | metadata | |
|
|:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 132.63 tokens</li><li>max: 2469 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 21.0 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 25.5 tokens</li><li>max: 29 tokens</li></ul> | |
|
* Samples: |
|
| text | dataset_source | metadata | |
|
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------|:------------------------------------------------------------------| |
|
| <code>سامي خضيرة : <br><br>الكابيتان فوقتنا كان هو كاسياس ولكن كنا كنحسو باللي راموس هو القائد الفعلي كان فيه الروح و الغرينتا ديال الاسبان .<br><br>ماتنساش كان معانا تا رونالدو كيهضر مع كولشي ويحفزنا ، و عادي تسمعو وسط الفيستير كيقول " خضيرة زير راسك وكون عدواني " ، " مسعود عطينا شوية من سحرك الكروي فالتيران " ونتا أدي ماريا حاول تشد الكرة وقصد المرمى " كان هادشي كيخلينا نعطيو كل ما فجهدنا <br><br>و بطبيعة الحال كان مورينيو الخطير فهاد الضومين ، و كانت المشكلة الكبيرة ديما هي كيفاش نوقفو ميسي ماشي غير حنا ولكن كاع الفراقي فداك الوقت .</code> | <code>atlasia/facebook_darija_dataset</code> | <code>{'pageName': "Football B'darija - فوتبول بالداريجة"}</code> | |
|
| <code>الأحداث كاتتطور بسرعة رهيبة ف بريتوريا !!<br><br>ميغيل كاردوزو المدرب السابق للترجي الرياضي التونسي وصل البارح بشكل مفاجئ لجنوب افريقيا.. وصباح اليوم الصحافة المحلية كاتأكد انو ماميلودي سانداونز غاتقيل المدرب ديالها اليوم و غاتعين كاردوزو ك بديل !</code> | <code>atlasia/facebook_darija_dataset</code> | <code>{'pageName': "Football B'darija - فوتبول بالداريجة"}</code> | |
|
| <code>الريال و تحدي جديد هاد الليلة باش يرجعو للمنافسة ف التشامبيانزليغ قدام خصم أقل ما يتقال عليه انو عتيد هو اتلانتا بيرغامو وليدات العبقري جيانبييرو غاسبيريني..<br><br>الريال مؤخرا ورغم الشكوك اللي دايرة على الفريق والمشاكل الدفاعية و الإصابات اللي زادت ف الهشاشة ديال الدفاع ديالو الا انو رجع بقوة للمنافسة فالليغا واستغل الفترة د الفراغ اللي تا تعيشها البارسا حاليا باش يرجع على بعد نقطتين من الصدارة و عندو ماتش مؤجل مرشح بقوة يفوز فيه على فالنسيا ويطلع للقمة ..<br><br>الريال تانضن لا ربح اليوم غايمحي بشكل شبه كلي الغمامة اللي كاتطوف فوق منو من بدا الموسم و غايقوي ثقة الجمهور فيه و يرجع الثقة للمجموعة و غايرسم راسو ك رقم قوي ف المنافسة المفضلة ليه واحنا ديجا عارفين ان الريال diesel فرقة كاتديماري بشوية بشوية وفالفترات الحاسمة ف الموسم كاتورك على السانكيام فيتيس.</code> | <code>atlasia/facebook_darija_dataset</code> | <code>{'pageName': "Football B'darija - فوتبول بالداريجة"}</code> | |
|
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### al-atlas-moroccan-darija-pretraining-dataset |
|
|
|
* Dataset: [al-atlas-moroccan-darija-pretraining-dataset](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset) at [6668961](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset/tree/66689612b03f0d7a9528bf74ea30782dd2976569) |
|
* Size: 1,875 evaluation samples |
|
* Columns: <code>text</code>, <code>dataset_source</code>, and <code>metadata</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | text | dataset_source | metadata | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 11.01 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 18.0 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 20.88 tokens</li><li>max: 74 tokens</li></ul> | |
|
* Samples: |
|
| text | dataset_source | metadata | |
|
|:---------------------------------------------------------------------------------------------------------|:----------------------------------------|:-----------------------------------------------------------------------------------------------------------| |
|
| <code>كاين في اللاخر ديال هاد القاعة. انجيب ليك شويا دابا. و إلا حتاجيتي شي حاجا اخرى، قولها ليا.</code> | <code>tachicart/mo_darija_merged</code> | <code>{'ar': 'إنها في أخر القاعة . سوف آتي لك ببعض منها الآن . إذا أردت أي شيئاً آخر فقط أعلمني .'}</code> | |
|
| <code>واش كا دير التعديلات؟</code> | <code>tachicart/mo_darija_merged</code> | <code>{'ar': 'هل تقومون بعمل تعديلات ؟'}</code> | |
|
| <code>بغينا ناخدو طابلة حدا الشرجم.</code> | <code>tachicart/mo_darija_merged</code> | <code>{'ar': 'نريد مائدة بجانب النافذة .'}</code> | |
|
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `learning_rate`: 0.0005 |
|
- `num_train_epochs`: 2 |
|
- `warmup_ratio`: 0.03 |
|
- `bf16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 0.0005 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 2 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.03 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:------:|:-------------:|:---------------:| |
|
| 0.0114 | 1000 | 3.2165 | 3.9089 | |
|
| 0.0227 | 2000 | 3.0702 | 3.4543 | |
|
| 0.0341 | 3000 | 3.0376 | 3.5355 | |
|
| 0.0454 | 4000 | 3.0205 | 3.4417 | |
|
| 0.0568 | 5000 | 3.0262 | 3.4540 | |
|
| 0.0681 | 6000 | 3.0141 | 3.4423 | |
|
| 0.0795 | 7000 | 3.0152 | 3.4597 | |
|
| 0.0908 | 8000 | 3.0089 | 3.4972 | |
|
| 0.1022 | 9000 | 3.0201 | 3.4511 | |
|
| 0.1135 | 10000 | 3.0043 | 3.4342 | |
|
| 0.1249 | 11000 | 2.9931 | 3.4398 | |
|
| 0.1362 | 12000 | 2.9955 | 3.4332 | |
|
| 0.1476 | 13000 | 3.0002 | 3.4291 | |
|
| 0.1590 | 14000 | 2.9924 | 3.4298 | |
|
| 0.1703 | 15000 | 3.0046 | 3.4330 | |
|
| 0.1817 | 16000 | 2.9917 | 3.4301 | |
|
| 0.1930 | 17000 | 3.0091 | 3.4520 | |
|
| 0.2044 | 18000 | 3.0021 | 3.4260 | |
|
| 0.2157 | 19000 | 2.9968 | 3.4222 | |
|
| 0.2271 | 20000 | 2.9966 | 3.4202 | |
|
| 0.2384 | 21000 | 3.0037 | 3.4315 | |
|
| 0.2498 | 22000 | 3.0024 | 3.4155 | |
|
| 0.2611 | 23000 | 2.9916 | 3.4174 | |
|
| 0.2725 | 24000 | 2.9891 | 3.4384 | |
|
| 0.2839 | 25000 | 2.9956 | 3.4443 | |
|
| 0.2952 | 26000 | 2.9966 | 3.4174 | |
|
| 0.3066 | 27000 | 2.9927 | 3.4233 | |
|
| 0.3179 | 28000 | 2.9895 | 3.4133 | |
|
| 0.3293 | 29000 | 2.9924 | 3.4124 | |
|
| 0.3406 | 30000 | 2.9879 | 3.4154 | |
|
| 0.3520 | 31000 | 2.9952 | 3.4209 | |
|
| 0.3633 | 32000 | 2.9901 | 3.4177 | |
|
| 0.3747 | 33000 | 2.9913 | 3.4140 | |
|
| 0.3860 | 34000 | 2.9985 | 3.4130 | |
|
| 0.3974 | 35000 | 2.9953 | 3.4131 | |
|
| 0.4087 | 36000 | 2.9987 | 3.4167 | |
|
| 0.4201 | 37000 | 2.9917 | 3.4165 | |
|
| 0.4315 | 38000 | 2.9908 | 3.4154 | |
|
| 0.4428 | 39000 | 2.9866 | 3.4103 | |
|
| 0.4542 | 40000 | 2.9931 | 3.4115 | |
|
| 0.4655 | 41000 | 2.9807 | 3.4100 | |
|
| 0.4769 | 42000 | 3.0011 | 3.4124 | |
|
| 0.4882 | 43000 | 3.0037 | 3.4098 | |
|
| 0.4996 | 44000 | 2.993 | 3.4082 | |
|
| 0.5109 | 45000 | 3.0012 | 3.4181 | |
|
| 0.5223 | 46000 | 3.0004 | 3.4117 | |
|
| 0.5336 | 47000 | 3.0003 | 3.4090 | |
|
| 0.5450 | 48000 | 2.9915 | 3.4055 | |
|
| 0.5564 | 49000 | 2.9992 | 3.4034 | |
|
| 0.5677 | 50000 | 2.9915 | 3.4061 | |
|
| 0.5791 | 51000 | 3.0028 | 3.4055 | |
|
| 0.5904 | 52000 | 2.9928 | 3.4027 | |
|
| 0.6018 | 53000 | 2.9899 | 3.4076 | |
|
| 0.6131 | 54000 | 2.9875 | 3.4032 | |
|
| 0.6245 | 55000 | 2.9956 | 3.4044 | |
|
| 0.6358 | 56000 | 2.9797 | 3.4011 | |
|
| 0.6472 | 57000 | 2.988 | 3.4050 | |
|
| 0.6585 | 58000 | 2.9832 | 3.4071 | |
|
| 0.6699 | 59000 | 2.9889 | 3.4134 | |
|
| 0.6812 | 60000 | 2.987 | 3.4057 | |
|
| 0.6926 | 61000 | 3.0046 | 3.4094 | |
|
| 0.7040 | 62000 | 2.984 | 3.4076 | |
|
| 0.7153 | 63000 | 2.9834 | 3.4090 | |
|
| 0.7267 | 64000 | 2.9932 | 3.4038 | |
|
| 0.7380 | 65000 | 2.9829 | 3.4009 | |
|
| 0.7494 | 66000 | 2.9976 | 3.4053 | |
|
| 0.7607 | 67000 | 2.9868 | 3.3996 | |
|
| 0.7721 | 68000 | 2.9925 | 3.3988 | |
|
| 0.7834 | 69000 | 2.9935 | 3.4042 | |
|
| 0.7948 | 70000 | 2.9877 | 3.4072 | |
|
| 0.8061 | 71000 | 2.995 | 3.4045 | |
|
| 0.8175 | 72000 | 2.9949 | 3.3988 | |
|
| 0.8288 | 73000 | 2.9969 | 3.4013 | |
|
| 0.8402 | 74000 | 3.0033 | 3.4027 | |
|
| 0.8516 | 75000 | 2.99 | 3.4041 | |
|
| 0.8629 | 76000 | 3.0038 | 3.3999 | |
|
| 0.8743 | 77000 | 3.0072 | 3.4022 | |
|
| 0.8856 | 78000 | 2.9878 | 3.4001 | |
|
| 0.8970 | 79000 | 2.9821 | 3.3992 | |
|
| 0.9083 | 80000 | 2.9921 | 3.3995 | |
|
| 0.9197 | 81000 | 2.9959 | 3.3977 | |
|
| 0.9310 | 82000 | 3.0004 | 3.3963 | |
|
| 0.9424 | 83000 | 2.9784 | 3.4021 | |
|
| 0.9537 | 84000 | 2.9923 | 3.3998 | |
|
| 0.9651 | 85000 | 2.9836 | 3.3972 | |
|
| 0.9765 | 86000 | 2.9949 | 3.3971 | |
|
| 0.9878 | 87000 | 2.9925 | 3.3968 | |
|
| 0.9992 | 88000 | 2.9777 | 3.3947 | |
|
| 1.0105 | 89000 | 2.9785 | 3.3975 | |
|
| 1.0219 | 90000 | 2.9988 | 3.3974 | |
|
| 1.0332 | 91000 | 2.9898 | 3.3954 | |
|
| 1.0446 | 92000 | 2.9866 | 3.3943 | |
|
| 1.0559 | 93000 | 2.9909 | 3.3936 | |
|
| 1.0673 | 94000 | 2.9843 | 3.3942 | |
|
| 1.0786 | 95000 | 2.9858 | 3.3924 | |
|
| 1.0900 | 96000 | 2.9942 | 3.3927 | |
|
| 1.1013 | 97000 | 2.9955 | 3.3936 | |
|
| 1.1127 | 98000 | 3.0003 | 3.3921 | |
|
| 1.1241 | 99000 | 2.9878 | 3.3947 | |
|
| 1.1354 | 100000 | 2.9972 | 3.3951 | |
|
| 1.1468 | 101000 | 2.9874 | 3.3999 | |
|
| 1.1581 | 102000 | 2.9828 | 3.3950 | |
|
| 1.1695 | 103000 | 2.9956 | 3.3929 | |
|
| 1.1808 | 104000 | 2.9886 | 3.3935 | |
|
| 1.1922 | 105000 | 2.982 | 3.3921 | |
|
| 1.2035 | 106000 | 2.9913 | 3.3916 | |
|
| 1.2149 | 107000 | 2.9831 | 3.3924 | |
|
| 1.2262 | 108000 | 2.9958 | 3.3926 | |
|
| 1.2376 | 109000 | 2.9969 | 3.3924 | |
|
| 1.2489 | 110000 | 2.9893 | 3.3920 | |
|
| 1.2603 | 111000 | 2.9888 | 3.3936 | |
|
| 1.2717 | 112000 | 2.9885 | 3.3925 | |
|
| 1.2830 | 113000 | 2.9866 | 3.3913 | |
|
| 1.2944 | 114000 | 2.9885 | 3.3907 | |
|
| 1.3057 | 115000 | 2.9782 | 3.3917 | |
|
| 1.3171 | 116000 | 2.9816 | 3.3907 | |
|
| 1.3284 | 117000 | 2.9857 | 3.3923 | |
|
| 1.3398 | 118000 | 2.9824 | 3.3925 | |
|
| 1.3511 | 119000 | 2.9966 | 3.3911 | |
|
| 1.3625 | 120000 | 2.9951 | 3.3923 | |
|
| 1.3738 | 121000 | 2.9914 | 3.3907 | |
|
| 1.3852 | 122000 | 2.9745 | 3.3916 | |
|
| 1.3966 | 123000 | 3.0008 | 3.3928 | |
|
| 1.4079 | 124000 | 2.9787 | 3.3942 | |
|
| 1.4193 | 125000 | 2.9789 | 3.3929 | |
|
| 1.4306 | 126000 | 2.9845 | 3.3928 | |
|
| 1.4420 | 127000 | 2.9792 | 3.3919 | |
|
| 1.4533 | 128000 | 2.9847 | 3.3911 | |
|
| 1.4647 | 129000 | 2.9905 | 3.3910 | |
|
| 1.4760 | 130000 | 2.9878 | 3.3916 | |
|
| 1.4874 | 131000 | 2.987 | 3.3918 | |
|
| 1.4987 | 132000 | 3.0025 | 3.3915 | |
|
| 1.5101 | 133000 | 2.9829 | 3.3911 | |
|
| 1.5214 | 134000 | 2.982 | 3.3914 | |
|
| 1.5328 | 135000 | 2.9923 | 3.3912 | |
|
| 1.5442 | 136000 | 2.9849 | 3.3918 | |
|
| 1.5555 | 137000 | 3.0002 | 3.3917 | |
|
| 1.5669 | 138000 | 2.9845 | 3.3918 | |
|
| 1.5782 | 139000 | 2.9906 | 3.3923 | |
|
| 1.5896 | 140000 | 2.9897 | 3.3921 | |
|
| 1.6009 | 141000 | 2.9813 | 3.3919 | |
|
| 1.6123 | 142000 | 2.9992 | 3.3919 | |
|
| 1.6236 | 143000 | 2.9872 | 3.3919 | |
|
| 1.6350 | 144000 | 2.9847 | 3.3919 | |
|
| 1.6463 | 145000 | 2.994 | 3.3917 | |
|
| 1.6577 | 146000 | 2.982 | 3.3916 | |
|
| 1.6691 | 147000 | 2.9994 | 3.3914 | |
|
| 1.6804 | 148000 | 2.9817 | 3.3914 | |
|
| 1.6918 | 149000 | 2.9889 | 3.3914 | |
|
| 1.7031 | 150000 | 2.9864 | 3.3914 | |
|
| 1.7145 | 151000 | 2.9912 | 3.3913 | |
|
| 1.7258 | 152000 | 2.9852 | 3.3912 | |
|
| 1.7372 | 153000 | 2.987 | 3.3912 | |
|
| 1.7485 | 154000 | 2.9762 | 3.3912 | |
|
| 1.7599 | 155000 | 2.9864 | 3.3912 | |
|
| 1.7712 | 156000 | 2.9947 | 3.3912 | |
|
| 1.7826 | 157000 | 2.9937 | 3.3911 | |
|
| 1.7939 | 158000 | 3.004 | 3.3912 | |
|
| 1.8053 | 159000 | 2.9804 | 3.3912 | |
|
| 1.8167 | 160000 | 2.9928 | 3.3912 | |
|
| 1.8280 | 161000 | 2.9966 | 3.3912 | |
|
| 1.8394 | 162000 | 2.9902 | 3.3912 | |
|
| 1.8507 | 163000 | 2.9807 | 3.3912 | |
|
| 1.8621 | 164000 | 2.9782 | 3.3911 | |
|
| 1.8734 | 165000 | 2.9963 | 3.3912 | |
|
| 1.8848 | 166000 | 2.9911 | 3.3911 | |
|
| 1.8961 | 167000 | 2.9969 | 3.3911 | |
|
| 1.9075 | 168000 | 2.9951 | 3.3911 | |
|
| 1.9188 | 169000 | 2.9948 | 3.3911 | |
|
| 1.9302 | 170000 | 2.9931 | 3.3911 | |
|
| 1.9415 | 171000 | 2.9895 | 3.3911 | |
|
| 1.9529 | 172000 | 2.9846 | 3.3911 | |
|
| 1.9643 | 173000 | 2.9888 | 3.3911 | |
|
| 1.9756 | 174000 | 2.9833 | 3.3911 | |
|
| 1.9870 | 175000 | 2.9816 | 3.3911 | |
|
| 1.9983 | 176000 | 2.9929 | 3.3911 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.12.3 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.48.0.dev0 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.1.1 |
|
- Datasets: 3.1.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### CachedMultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{gao2021scaling, |
|
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup}, |
|
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan}, |
|
year={2021}, |
|
eprint={2101.06983}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |