Bmalmotairy's picture
trained model on the new 8-iterations clean data
c13ef9c
|
raw
history blame
1.74 kB
---
base_model: UBC-NLP/MARBERT
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: marbert-finetuned-wanlp_sarcasm
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marbert-finetuned-wanlp_sarcasm
This model is a fine-tuned version of [UBC-NLP/MARBERT](https://huggingface.co/UBC-NLP/MARBERT) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6362
- Accuracy: 0.9485
- Precision: 0.7758
- Recall: 0.7814
- F1: 0.7786
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.2904 | 1.0 | 226 | 0.4947 | 0.9402 | 0.8199 | 0.6201 | 0.7061 |
| 0.2199 | 2.0 | 452 | 0.4060 | 0.9406 | 0.7345 | 0.7634 | 0.7487 |
| 0.0545 | 3.0 | 678 | 0.6362 | 0.9485 | 0.7758 | 0.7814 | 0.7786 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1