|  | --- | 
					
						
						|  | library_name: transformers | 
					
						
						|  | tags: | 
					
						
						|  | - generated_from_trainer | 
					
						
						|  | metrics: | 
					
						
						|  | - accuracy | 
					
						
						|  | - bleu | 
					
						
						|  | model-index: | 
					
						
						|  | - name: parallel-mean-bottleneck-gpt2-medium-wikitext | 
					
						
						|  | results: [] | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | <!-- This model card has been generated automatically according to the information the Trainer had access to. You | 
					
						
						|  | should probably proofread and complete it, then remove this comment. --> | 
					
						
						|  |  | 
					
						
						|  | # parallel-mean-bottleneck-gpt2-medium-wikitext | 
					
						
						|  |  | 
					
						
						|  | This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. | 
					
						
						|  | It achieves the following results on the evaluation set: | 
					
						
						|  | - Loss: 3.1864 | 
					
						
						|  | - Accuracy: 0.4195 | 
					
						
						|  | - Perplexity: 24.2005 | 
					
						
						|  | - Bleu: 0.1476 | 
					
						
						|  |  | 
					
						
						|  | ## Model description | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Intended uses & limitations | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Training and evaluation data | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Training procedure | 
					
						
						|  |  | 
					
						
						|  | ### Training hyperparameters | 
					
						
						|  |  | 
					
						
						|  | The following hyperparameters were used during training: | 
					
						
						|  | - learning_rate: 0.0001 | 
					
						
						|  | - train_batch_size: 64 | 
					
						
						|  | - eval_batch_size: 64 | 
					
						
						|  | - seed: 42 | 
					
						
						|  | - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments | 
					
						
						|  | - lr_scheduler_type: linear | 
					
						
						|  | - lr_scheduler_warmup_ratio: 0.1 | 
					
						
						|  | - num_epochs: 5 | 
					
						
						|  |  | 
					
						
						|  | ### Training results | 
					
						
						|  |  | 
					
						
						|  | | Training Loss | Epoch  | Step | Validation Loss | Accuracy | Perplexity | Bleu   | | 
					
						
						|  | |:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:| | 
					
						
						|  | | 6.0443        | 0.2806 | 500  | 5.9164          | 0.1901   | 371.0844   | 0.0350 | | 
					
						
						|  | | 5.0429        | 0.5612 | 1000 | 4.8947          | 0.2638   | 133.5839   | 0.0647 | | 
					
						
						|  | | 4.3531        | 0.8418 | 1500 | 4.2426          | 0.3176   | 69.5891    | 0.0829 | | 
					
						
						|  | | 3.9503        | 1.1223 | 2000 | 3.8874          | 0.3517   | 48.7842    | 0.1050 | | 
					
						
						|  | | 3.7613        | 1.4029 | 2500 | 3.7124          | 0.3672   | 40.9504    | 0.1211 | | 
					
						
						|  | | 3.6548        | 1.6835 | 3000 | 3.5911          | 0.3780   | 36.2753    | 0.1308 | | 
					
						
						|  | | 3.5531        | 1.9641 | 3500 | 3.5068          | 0.3860   | 33.3428    | 0.1340 | | 
					
						
						|  | | 3.4344        | 2.2447 | 4000 | 3.4411          | 0.3920   | 31.2224    | 0.1356 | | 
					
						
						|  | | 3.3743        | 2.5253 | 4500 | 3.3875          | 0.3972   | 29.5917    | 0.1389 | | 
					
						
						|  | | 3.3443        | 2.8058 | 5000 | 3.3429          | 0.4016   | 28.3017    | 0.1373 | | 
					
						
						|  | | 3.225         | 3.0864 | 5500 | 3.3080          | 0.4055   | 27.3310    | 0.1419 | | 
					
						
						|  | | 3.2185        | 3.3670 | 6000 | 3.2781          | 0.4090   | 26.5258    | 0.1463 | | 
					
						
						|  | | 3.1972        | 3.6476 | 6500 | 3.2500          | 0.4121   | 25.7899    | 0.1453 | | 
					
						
						|  | | 3.1719        | 3.9282 | 7000 | 3.2268          | 0.4144   | 25.1990    | 0.1465 | | 
					
						
						|  | | 3.1052        | 4.2088 | 7500 | 3.2109          | 0.4162   | 24.8018    | 0.1472 | | 
					
						
						|  | | 3.0672        | 4.4893 | 8000 | 3.1978          | 0.4179   | 24.4788    | 0.1469 | | 
					
						
						|  | | 3.0773        | 4.7699 | 8500 | 3.1864          | 0.4195   | 24.2005    | 0.1476 | | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ### Framework versions | 
					
						
						|  |  | 
					
						
						|  | - Transformers 4.49.0 | 
					
						
						|  | - Pytorch 2.6.0+cu124 | 
					
						
						|  | - Datasets 3.3.2 | 
					
						
						|  | - Tokenizers 0.21.0 | 
					
						
						|  |  |