|
--- |
|
library_name: peft |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/nllb-200-distilled-1.3B |
|
model-index: |
|
- name: mon_nllb_1.3B |
|
results: |
|
- task: |
|
type: translation |
|
dataset: |
|
type: flores-200 |
|
name: FLORES-200 |
|
metrics: |
|
- name: BLEU |
|
type: BLEU |
|
value: 44.06 |
|
verified: False |
|
- name: chrF |
|
type: chrF |
|
value: 44.43 |
|
verified: False |
|
- name: METEOR |
|
type: METEOR |
|
value: 0.537 |
|
verified: False |
|
datasets: |
|
- Billyyy/mn-en-parallel |
|
language: |
|
- mn |
|
metrics: |
|
- bleu |
|
- chrf |
|
- meteor |
|
pipeline_tag: translation |
|
--- |
|
|
|
# mon_nllb_1.3B |
|
|
|
This model is a fine-tuned version of [facebook/nllb-200-distilled-1.3B](https://huggingface.co/facebook/nllb-200-distilled-1.3B) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- BLEU: 44.06 |
|
- chrF: 44.43 |
|
- METEOR: 0.537 |
|
|
|
## Example Usage |
|
```python |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
|
|
model_name = "Billyyy/mon_nllb_1.3B" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
|
|
text = "Сайн байна уу"?" |
|
inputs = tokenizer(text, return_tensors="pt") |
|
|
|
output_tokens = model.generate(**inputs) |
|
translated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True) |
|
|
|
print(translated_text) |
|
``` |
|
## Model description |
|
|
|
This model was finetuned on Mongolian->English parallel dataset with LoRA |
|
|
|
## Training and evaluation data |
|
Training data: |
|
- 1M translation data from https://github.com/sharavsambuu/english-mongolian-nmt-dataset-augmentation?tab=readme-ov-file |
|
- OpenSubtitles |
|
- TED2020 |
|
|
|
Evaluation data: |
|
- FLORES-200 |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 40 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 160 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 2 |
|
- mixed_precision_training: FP16 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:-----:|:---------------:| |
|
| 7.3708 | 0.1522 | 1000 | 7.2420 | |
|
| 7.25 | 0.3044 | 2000 | 7.2126 | |
|
| 7.237 | 0.4567 | 3000 | 7.2120 | |
|
| 7.2344 | 0.6089 | 4000 | 7.2137 | |
|
| 7.2323 | 0.7611 | 5000 | 7.2130 | |
|
| 7.2351 | 0.9133 | 6000 | 7.2121 | |
|
| 7.222 | 1.0656 | 7000 | 7.2131 | |
|
| 7.22 | 1.2178 | 8000 | 7.2122 | |
|
| 7.2077 | 1.3700 | 9000 | 7.2131 | |
|
| 7.2132 | 1.5223 | 10000 | 7.2132 | |
|
| 7.2211 | 1.6745 | 11000 | 7.2128 | |
|
| 7.2269 | 1.8267 | 12000 | 7.2131 | |
|
| 7.2296 | 1.9789 | 13000 | 7.2132 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.49.0 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.3.2 |
|
- Tokenizers 0.21.0 |