distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.4719
- Accuracy: 0.85
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9857 | 1.0 | 113 | 1.7744 | 0.55 |
1.2769 | 2.0 | 226 | 1.1405 | 0.71 |
1.0336 | 3.0 | 339 | 0.8697 | 0.75 |
0.9106 | 4.0 | 452 | 0.8546 | 0.72 |
0.5839 | 5.0 | 565 | 0.5701 | 0.86 |
0.3163 | 6.0 | 678 | 0.5471 | 0.8 |
0.3682 | 7.0 | 791 | 0.4865 | 0.83 |
0.1245 | 8.0 | 904 | 0.4407 | 0.88 |
0.1412 | 9.0 | 1017 | 0.4737 | 0.84 |
0.1531 | 10.0 | 1130 | 0.4719 | 0.85 |
Framework versions
- Transformers 4.31.0.dev0
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 160
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Bhanu9Prakash/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert