metadata
license: mit
base_model: nlpie/bio-mobilebert
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: NLPGroupProject-Finetune-bio-mobilebert-AL
results: []
NLPGroupProject-Finetune-bio-mobilebert-AL
This model is a fine-tuned version of nlpie/bio-mobilebert on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5244
- Accuracy: 0.737
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.3121 | 250 | 0.8963 | 0.718 |
0.8374 | 0.6242 | 500 | 0.6912 | 0.74 |
0.8374 | 0.9363 | 750 | 0.7389 | 0.747 |
0.6729 | 1.2484 | 1000 | 0.8110 | 0.737 |
0.6729 | 1.5605 | 1250 | 1.0646 | 0.733 |
0.6059 | 1.8727 | 1500 | 0.8516 | 0.733 |
0.6059 | 2.1848 | 1750 | 1.2728 | 0.734 |
0.4538 | 2.4969 | 2000 | 1.5648 | 0.731 |
0.4538 | 2.8090 | 2250 | 1.5244 | 0.737 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.2+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1