metadata
library_name: transformers
language:
- ar
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper tiny AR - BH
results: []
Whisper tiny AR - BH
This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:
- Loss: 0.0125
- Wer: 0.1370
- Cer: 0.0480
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.0123 | 1.0 | 157 | 0.0128 | 0.1433 | 0.0533 |
0.0092 | 2.0 | 314 | 0.0121 | 0.1300 | 0.0442 |
0.0056 | 3.0 | 471 | 0.0140 | 0.1457 | 0.0512 |
0.0044 | 4.0 | 628 | 0.0147 | 0.1524 | 0.0528 |
0.0027 | 5.0 | 785 | 0.0167 | 0.1539 | 0.0521 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0