Baselhany's picture
Training finished
39d43b7 verified
|
raw
history blame
2.34 kB
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Whisper tiny AR - BH
    results: []

Whisper tiny AR - BH

This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0097
  • Wer: 0.0951
  • Cer: 0.0412

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.0078 1.0 313 0.0073 0.0916 0.0336
0.0059 2.0 626 0.0071 0.0878 0.0325
0.0051 3.0 939 0.0072 0.0878 0.0331
0.0036 4.0 1252 0.0077 0.0874 0.0336
0.0017 5.0 1565 0.0081 0.0881 0.0341
0.0018 6.0 1878 0.0086 0.0871 0.0357
0.0016 7.0 2191 0.0091 0.0909 0.0369
0.0016 8.0 2504 0.0095 0.0842 0.0327
0.0011 9.0 2817 0.0098 0.0889 0.0336
0.001 10.0 3130 0.0102 0.0872 0.0415
0.0008 11.0 3443 0.0104 0.0865 0.0321

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0