Baselhany's picture
Training finished
23e0f6f verified
|
raw
history blame
2.34 kB
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Whisper tiny AR - BH
    results: []

Whisper tiny AR - BH

This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0076
  • Wer: 0.0861
  • Cer: 0.0359

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.008 1.0 235 0.0066 0.0804 0.0302
0.0062 2.0 470 0.0064 0.0793 0.0305
0.0066 3.0 705 0.0063 0.0753 0.0302
0.0038 4.0 940 0.0064 0.0767 0.0288
0.0037 5.0 1175 0.0067 0.0766 0.0296
0.0031 6.0 1410 0.0069 0.0751 0.0291
0.002 7.0 1645 0.0074 0.0809 0.0309
0.0013 8.0 1880 0.0077 0.0796 0.0297
0.0016 9.0 2115 0.0079 0.0796 0.0297
0.001 10.0 2350 0.0083 0.0795 0.0297
0.0005 11.0 2585 0.0085 0.0780 0.0290

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0