metadata
library_name: transformers
language:
- ar
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper tiny AR - BH
results: []
Whisper tiny AR - BH
This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:
- Loss: 0.0101
- Wer: 0.1150
- Cer: 0.0408
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.0101 | 1.0 | 157 | 0.0101 | 0.1162 | 0.0413 |
0.008 | 2.0 | 314 | 0.0099 | 0.1148 | 0.0406 |
0.0055 | 3.0 | 471 | 0.0100 | 0.1140 | 0.0384 |
0.0079 | 4.0 | 628 | 0.0103 | 0.1155 | 0.0401 |
0.0033 | 5.0 | 785 | 0.0117 | 0.1146 | 0.0409 |
0.0023 | 6.0 | 942 | 0.0121 | 0.1184 | 0.0402 |
0.0011 | 7.0 | 1099 | 0.0133 | 0.1204 | 0.0425 |
0.001 | 8.0 | 1256 | 0.0138 | 0.1166 | 0.0402 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0