SetFit with sentence-transformers/distiluse-base-multilingual-cased-v1
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/distiluse-base-multilingual-cased-v1 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
Label |
Examples |
0 |
- 'Federer, Nadal y Djoković han gobernado con mano de hierro el tenis mundial en esta era. Se va el primero, el que empezó a instalar la tiranía. No somos conscientes de lo que se va con Roger. Afortunados de poder vivir uno de los momentos del deporte más gloriosos. Sin dudas.'
- 'Nuestro primer viaje deportivo mayerlingaranguren ! El primero de muchos... en Distrito Federal,…'
- 'Por nuestro país y el futuro de nuestros hijos.'
|
1 |
- '¡Aquí estoy!, la depresión y tristeza por problemas económicos no me va a matar. Viviré a pesar de los 3 $ que como ingeniero jubilado me pagan mensual el gobierno. Ofrezco mis servicios en impermeabilización de techos y platabandas. Me disculpan que lo haga por este medio.'
- '.: Remontarse a los precios de diciembre de 2017 generará más desempleo'
- 'Tengo media hora intentando comprar $ por banesco y no hay disponible en la mesa de cambio'
|
Evaluation
Metrics
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("setfit_model_id")
preds = model("Coño cuál juego de la violencia Henry,aquí la violencia viene de un solo lado,en El Tocuyo y Carora cazaron a esos muchachos como animales")
Training Details
Training Set Metrics
Training set |
Min |
Median |
Max |
Word count |
1 |
30.0686 |
76 |
Label |
Training Sample Count |
0 |
122 |
1 |
53 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (0.0001, 0.0001)
- head_learning_rate: 0.0001
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch |
Step |
Training Loss |
Validation Loss |
0.0018 |
1 |
0.408 |
- |
0.0894 |
50 |
0.0144 |
- |
0.1789 |
100 |
0.0002 |
- |
0.2683 |
150 |
0.0 |
- |
0.3578 |
200 |
0.0 |
- |
0.4472 |
250 |
0.0 |
- |
0.5367 |
300 |
0.0 |
- |
0.6261 |
350 |
0.0 |
- |
0.7156 |
400 |
0.0 |
- |
0.8050 |
450 |
0.0 |
- |
0.8945 |
500 |
0.0 |
- |
0.9839 |
550 |
0.0 |
- |
1.0733 |
600 |
0.0 |
- |
1.1628 |
650 |
0.0 |
- |
1.2522 |
700 |
0.0 |
- |
1.3417 |
750 |
0.0 |
- |
1.4311 |
800 |
0.0 |
- |
1.5206 |
850 |
0.0 |
- |
1.6100 |
900 |
0.0 |
- |
1.6995 |
950 |
0.0 |
- |
1.7889 |
1000 |
0.0 |
- |
1.8784 |
1050 |
0.0 |
- |
1.9678 |
1100 |
0.0 |
- |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu118
- Datasets: 2.15.0
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}