This is a stable version of BSJCode, a model capable of fixing as well as optimizing java code.


## How to use it:

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch

# Load the model and tokenizer
bnb_config = BitsAndBytesConfig(
   load_in_4bit=True,
   bnb_4bit_quant_type="nf4",
   bnb_4bit_compute_dtype=torch.float16,
   bnb_4bit_use_double_quant=True,
   llm_int8_enable_fp32_cpu_offload=True 
)
model = AutoModelForCausalLM.from_pretrained(
   "BSAtlas/BSJCode-1-Stable",
   quantization_config=bnb_config,
   device_map="auto"
).to(device="cuda")
tokenizer = AutoTokenizer.from_pretrained("BSAtlas/BSJCode-1-Stable")


def detect_and_fix_bugs(code_snippet):
   # Prepare the prompt
   prompt = f"""You are an expert Java code optimizer and bug fixer. 
   Analyze the following code, identify any bugs or inefficiencies, 
   and provide an optimized and corrected version:

   ```java
   {code_snippet}
   ```

   Optimized and Fixed Code:"""

   # Tokenize the input
   inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)

   # Generate code
   with torch.no_grad():
       outputs = model.generate(
           input_ids=inputs['input_ids'],
           attention_mask=inputs['attention_mask'],
           max_length=1024,  # Adjust based on your model's training
           num_return_sequences=1,
           do_sample=True,
           temperature=0.7,
           top_k=50,
           top_p=0.95,
           repetition_penalty=1.2
       )
   
   # Decode the output
   generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
   
   # Extract the code portion after the prompt
   code_start = generated_code.find("Optimized and Fixed Code:")
   if code_start != -1:
       fixed_code = generated_code[code_start + len("Optimized and Fixed Code:"):].strip()
   else:
       fixed_code = generated_code

   return fixed_code


   sample_code = """
public class ThreadSafetyExample {
   private int counter = 0;

   public void increment() {
       // Not thread-safe method
       counter++;
   }

   public int getCounter() {
       return counter;
   }

   public static void main(String[] args) {
       ThreadSafetyExample example = new ThreadSafetyExample();

       Thread t1 = new Thread(() -> {
           for (int i = 0; i < 1000; i++) {
               example.increment();
           }
       });

       Thread t2 = new Thread(() -> {
           for (int i = 0; i < 1000; i++) {
               example.increment();
           }
       });

       t1.start();
       t2.start();

       try {
           t1.join();
           t2.join();
       } catch (InterruptedException e) {
           e.printStackTrace();
       }

       System.out.println("Final Counter: " + example.getCounter());
   }
}
"""
fixed_code = detect_and_fix_bugs(sample_code)
print(fixed_code)
--------------------------------------------------------------------------
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.