File size: 4,719 Bytes
b33c1d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# Named Entity Recognition (NER) with Roberta
## π Overview
This repository hosts the quantized version of the `roberta-base` model for Named Entity Recognition (NER) using the CoNLL-2003 dataset. The model is specifically designed to recognize entities related to **Person (PER), Organization (ORG), and Location (LOC)**. The model has been optimized for efficient deployment while maintaining high accuracy, making it suitable for resource-constrained environments.
## π Model Details
- **Model Architecture**: Roberta Base
- **Task**: Named Entity Recognition (NER)
- **Dataset**: Hugging Face's CoNLL-2003
- **Quantization**: BrainFloat16
- **Fine-tuning Framework**: Hugging Face Transformers
---
## π Usage
### Installation
```bash
pip install transformers torch
```
### Loading the Model
```python
from transformers import RobertaTokenizerFast, RobertaForTokenClassification
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "AventIQ-AI/roberta-named-entity-recognition"
model = RobertaForTokenClassification.from_pretrained(model_name).to(device)
tokenizer = RobertaTokenizerFast.from_pretrained(model_name)
```
### Named Entity Recognition Inference
```python
label_list = ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-MISC", "I-MISC"]
```
### **πΉ Labeling Scheme (BIO Format)**
- **B-XYZ (Beginning)**: Indicates the beginning of an entity of type XYZ (e.g., B-PER for the beginning of a personβs name).
- **I-XYZ (Inside)**: Represents subsequent tokens inside an entity (e.g., I-PER for the second part of a personβs name).
- **O (Outside)**: Denotes tokens that are not part of any named entity.
```
def predict_entities(text, model):
tokens = tokenizer(text, return_tensors="pt", truncation=True)
tokens = {key: val.to(device) for key, val in tokens.items()} # Move to CUDA
with torch.no_grad():
outputs = model(**tokens)
logits = outputs.logits # Extract logits
predictions = torch.argmax(logits, dim=2) # Get highest probability labels
tokens_list = tokenizer.convert_ids_to_tokens(tokens["input_ids"][0])
predicted_labels = [label_list[pred] for pred in predictions[0].cpu().numpy()]
final_tokens = []
final_labels = []
for token, label in zip(tokens_list, predicted_labels):
if token.startswith("##"):
final_tokens[-1] += token[2:] # Merge subword
else:
final_tokens.append(token)
final_labels.append(label)
for token, label in zip(final_tokens, final_labels):
if token not in ["[CLS]", "[SEP]"]:
print(f"{token}: {label}")
# π Test Example
sample_text = "Elon Musk is the CEO of Tesla, which is based in California."
predict_entities(sample_text, model)
```
---
## π Evaluation Results for Quantized Model
### **πΉ Overall Performance**
- **Accuracy**: **97.10%** β
- **Precision**: **89.52%**
- **Recall**: **90.67%**
- **F1 Score**: **90.09%**
---
### **πΉ Performance by Entity Type**
| Entity Type | Precision | Recall | F1 Score | Number of Entities |
|------------|-----------|--------|----------|--------------------|
| **LOC** (Location) | **91.46%** | **92.07%** | **91.76%** | 3,000 |
| **MISC** (Miscellaneous) | **71.25%** | **72.83%** | **72.03%** | 1,266 |
| **ORG** (Organization) | **89.83%** | **93.02%** | **91.40%** | 3,524 |
| **PER** (Person) | **95.16%** | **94.04%** | **94.60%** | 2,989 |
---
#### β³ **Inference Speed Metrics**
- **Total Evaluation Time**: 15.89 sec
- **Samples Processed per Second**: 217.26
- **Steps per Second**: 27.18
- **Epochs Completed**: 3
---
## Fine-Tuning Details
### Dataset
The Hugging Face's `CoNLL-2003` dataset was used, containing texts and their ner tags.
## π Training Details
- **Number of epochs**: 3
- **Batch size**: 8
- **Evaluation strategy**: epoch
- **Learning Rate**: 2e-5
### β‘ Quantization
Post-training quantization was applied using PyTorch's built-in quantization framework to reduce the model size and improve inference efficiency.
---
## π Repository Structure
```
.
βββ model/ # Contains the quantized model files
βββ tokenizer_config/ # Tokenizer configuration and vocabulary files
βββ model.safetensors/ # Quantized Model
βββ README.md # Model documentation
```
---
## β οΈ Limitations
- The model may not generalize well to domains outside the fine-tuning dataset.
- Quantization may result in minor accuracy degradation compared to full-precision models.
---
## π€ Contributing
Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.
|