File size: 4,719 Bytes
b33c1d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Named Entity Recognition (NER) with Roberta

## πŸ“Œ Overview
This repository hosts the quantized version of the `roberta-base` model for Named Entity Recognition (NER) using the CoNLL-2003 dataset. The model is specifically designed to recognize entities related to **Person (PER), Organization (ORG), and Location (LOC)**. The model has been optimized for efficient deployment while maintaining high accuracy, making it suitable for resource-constrained environments.

## πŸ— Model Details
- **Model Architecture**: Roberta Base
- **Task**: Named Entity Recognition (NER)
- **Dataset**: Hugging Face's CoNLL-2003
- **Quantization**: BrainFloat16
- **Fine-tuning Framework**: Hugging Face Transformers

---
## πŸš€ Usage

### Installation
```bash
pip install transformers torch
```

### Loading the Model
```python
from transformers import RobertaTokenizerFast, RobertaForTokenClassification
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"

model_name = "AventIQ-AI/roberta-named-entity-recognition"
model = RobertaForTokenClassification.from_pretrained(model_name).to(device)
tokenizer = RobertaTokenizerFast.from_pretrained(model_name)
```

### Named Entity Recognition Inference
```python
label_list = ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-MISC", "I-MISC"]
```
### **πŸ”Ή Labeling Scheme (BIO Format)**
 
- **B-XYZ (Beginning)**: Indicates the beginning of an entity of type XYZ (e.g., B-PER for the beginning of a person’s name).
- **I-XYZ (Inside)**: Represents subsequent tokens inside an entity (e.g., I-PER for the second part of a person’s name).
- **O (Outside)**: Denotes tokens that are not part of any named entity.

```
def predict_entities(text, model):

    tokens = tokenizer(text, return_tensors="pt", truncation=True)
    tokens = {key: val.to(device) for key, val in tokens.items()}  # Move to CUDA

    with torch.no_grad():
        outputs = model(**tokens)
    
    logits = outputs.logits  # Extract logits
    predictions = torch.argmax(logits, dim=2)  # Get highest probability labels

    tokens_list = tokenizer.convert_ids_to_tokens(tokens["input_ids"][0])
    predicted_labels = [label_list[pred] for pred in predictions[0].cpu().numpy()]

    final_tokens = []
    final_labels = []
    for token, label in zip(tokens_list, predicted_labels):
        if token.startswith("##"):  
            final_tokens[-1] += token[2:]  # Merge subword
        else:
            final_tokens.append(token)
            final_labels.append(label)

    for token, label in zip(final_tokens, final_labels):
        if token not in ["[CLS]", "[SEP]"]:
            print(f"{token}: {label}")

# πŸ” Test Example
sample_text = "Elon Musk is the CEO of Tesla, which is based in California."
predict_entities(sample_text, model)
```
---
## πŸ“Š Evaluation Results for Quantized Model
 
### **πŸ”Ή Overall Performance**
 
- **Accuracy**: **97.10%** βœ…
- **Precision**: **89.52%**
- **Recall**: **90.67%**
- **F1 Score**: **90.09%**
 
---
 
### **πŸ”Ή Performance by Entity Type**
 
| Entity Type | Precision | Recall | F1 Score | Number of Entities |
|------------|-----------|--------|----------|--------------------|
| **LOC** (Location) | **91.46%** | **92.07%** | **91.76%** | 3,000 |
| **MISC** (Miscellaneous) | **71.25%** | **72.83%** | **72.03%** | 1,266 |
| **ORG** (Organization) | **89.83%** | **93.02%** | **91.40%** | 3,524 |
| **PER** (Person) | **95.16%** | **94.04%** | **94.60%** | 2,989 |

 ---
#### ⏳ **Inference Speed Metrics**
- **Total Evaluation Time**: 15.89 sec
- **Samples Processed per Second**: 217.26
- **Steps per Second**: 27.18
- **Epochs Completed**: 3
 
---
## Fine-Tuning Details
### Dataset
The Hugging Face's `CoNLL-2003` dataset was used, containing texts and their ner tags.

## πŸ“Š Training Details
- **Number of epochs**: 3  
- **Batch size**: 8  
- **Evaluation strategy**: epoch
- **Learning Rate**: 2e-5

### ⚑ Quantization
Post-training quantization was applied using PyTorch's built-in quantization framework to reduce the model size and improve inference efficiency.

---
## πŸ“‚ Repository Structure
```
.
β”œβ”€β”€ model/               # Contains the quantized model files
β”œβ”€β”€ tokenizer_config/    # Tokenizer configuration and vocabulary files
β”œβ”€β”€ model.safetensors/   # Quantized Model
β”œβ”€β”€ README.md            # Model documentation
```

---
## ⚠️ Limitations
- The model may not generalize well to domains outside the fine-tuning dataset.
- Quantization may result in minor accuracy degradation compared to full-precision models.

---
## 🀝 Contributing
Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.