Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Named Entity Recognition (NER) with Roberta
|
2 |
+
|
3 |
+
## π Overview
|
4 |
+
This repository hosts the quantized version of the `roberta-base` model for Named Entity Recognition (NER) using the CoNLL-2003 dataset. The model is specifically designed to recognize entities related to **Person (PER), Organization (ORG), and Location (LOC)**. The model has been optimized for efficient deployment while maintaining high accuracy, making it suitable for resource-constrained environments.
|
5 |
+
|
6 |
+
## π Model Details
|
7 |
+
- **Model Architecture**: Roberta Base
|
8 |
+
- **Task**: Named Entity Recognition (NER)
|
9 |
+
- **Dataset**: Hugging Face's CoNLL-2003
|
10 |
+
- **Quantization**: BrainFloat16
|
11 |
+
- **Fine-tuning Framework**: Hugging Face Transformers
|
12 |
+
|
13 |
+
---
|
14 |
+
## π Usage
|
15 |
+
|
16 |
+
### Installation
|
17 |
+
```bash
|
18 |
+
pip install transformers torch
|
19 |
+
```
|
20 |
+
|
21 |
+
### Loading the Model
|
22 |
+
```python
|
23 |
+
from transformers import RobertaTokenizerFast, RobertaForTokenClassification
|
24 |
+
import torch
|
25 |
+
|
26 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
+
|
28 |
+
model_name = "AventIQ-AI/roberta-named-entity-recognition"
|
29 |
+
model = RobertaForTokenClassification.from_pretrained(model_name).to(device)
|
30 |
+
tokenizer = RobertaTokenizerFast.from_pretrained(model_name)
|
31 |
+
```
|
32 |
+
|
33 |
+
### Named Entity Recognition Inference
|
34 |
+
```python
|
35 |
+
label_list = ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-MISC", "I-MISC"]
|
36 |
+
```
|
37 |
+
### **πΉ Labeling Scheme (BIO Format)**
|
38 |
+
|
39 |
+
- **B-XYZ (Beginning)**: Indicates the beginning of an entity of type XYZ (e.g., B-PER for the beginning of a personβs name).
|
40 |
+
- **I-XYZ (Inside)**: Represents subsequent tokens inside an entity (e.g., I-PER for the second part of a personβs name).
|
41 |
+
- **O (Outside)**: Denotes tokens that are not part of any named entity.
|
42 |
+
|
43 |
+
```
|
44 |
+
def predict_entities(text, model):
|
45 |
+
|
46 |
+
tokens = tokenizer(text, return_tensors="pt", truncation=True)
|
47 |
+
tokens = {key: val.to(device) for key, val in tokens.items()} # Move to CUDA
|
48 |
+
|
49 |
+
with torch.no_grad():
|
50 |
+
outputs = model(**tokens)
|
51 |
+
|
52 |
+
logits = outputs.logits # Extract logits
|
53 |
+
predictions = torch.argmax(logits, dim=2) # Get highest probability labels
|
54 |
+
|
55 |
+
tokens_list = tokenizer.convert_ids_to_tokens(tokens["input_ids"][0])
|
56 |
+
predicted_labels = [label_list[pred] for pred in predictions[0].cpu().numpy()]
|
57 |
+
|
58 |
+
final_tokens = []
|
59 |
+
final_labels = []
|
60 |
+
for token, label in zip(tokens_list, predicted_labels):
|
61 |
+
if token.startswith("##"):
|
62 |
+
final_tokens[-1] += token[2:] # Merge subword
|
63 |
+
else:
|
64 |
+
final_tokens.append(token)
|
65 |
+
final_labels.append(label)
|
66 |
+
|
67 |
+
for token, label in zip(final_tokens, final_labels):
|
68 |
+
if token not in ["[CLS]", "[SEP]"]:
|
69 |
+
print(f"{token}: {label}")
|
70 |
+
|
71 |
+
# π Test Example
|
72 |
+
sample_text = "Elon Musk is the CEO of Tesla, which is based in California."
|
73 |
+
predict_entities(sample_text, model)
|
74 |
+
```
|
75 |
+
---
|
76 |
+
## π Evaluation Results for Quantized Model
|
77 |
+
|
78 |
+
### **πΉ Overall Performance**
|
79 |
+
|
80 |
+
- **Accuracy**: **97.10%** β
|
81 |
+
- **Precision**: **89.52%**
|
82 |
+
- **Recall**: **90.67%**
|
83 |
+
- **F1 Score**: **90.09%**
|
84 |
+
|
85 |
+
---
|
86 |
+
|
87 |
+
### **πΉ Performance by Entity Type**
|
88 |
+
|
89 |
+
| Entity Type | Precision | Recall | F1 Score | Number of Entities |
|
90 |
+
|------------|-----------|--------|----------|--------------------|
|
91 |
+
| **LOC** (Location) | **91.46%** | **92.07%** | **91.76%** | 3,000 |
|
92 |
+
| **MISC** (Miscellaneous) | **71.25%** | **72.83%** | **72.03%** | 1,266 |
|
93 |
+
| **ORG** (Organization) | **89.83%** | **93.02%** | **91.40%** | 3,524 |
|
94 |
+
| **PER** (Person) | **95.16%** | **94.04%** | **94.60%** | 2,989 |
|
95 |
+
|
96 |
+
---
|
97 |
+
#### β³ **Inference Speed Metrics**
|
98 |
+
- **Total Evaluation Time**: 15.89 sec
|
99 |
+
- **Samples Processed per Second**: 217.26
|
100 |
+
- **Steps per Second**: 27.18
|
101 |
+
- **Epochs Completed**: 3
|
102 |
+
|
103 |
+
---
|
104 |
+
## Fine-Tuning Details
|
105 |
+
### Dataset
|
106 |
+
The Hugging Face's `CoNLL-2003` dataset was used, containing texts and their ner tags.
|
107 |
+
|
108 |
+
## π Training Details
|
109 |
+
- **Number of epochs**: 3
|
110 |
+
- **Batch size**: 8
|
111 |
+
- **Evaluation strategy**: epoch
|
112 |
+
- **Learning Rate**: 2e-5
|
113 |
+
|
114 |
+
### β‘ Quantization
|
115 |
+
Post-training quantization was applied using PyTorch's built-in quantization framework to reduce the model size and improve inference efficiency.
|
116 |
+
|
117 |
+
---
|
118 |
+
## π Repository Structure
|
119 |
+
```
|
120 |
+
.
|
121 |
+
βββ model/ # Contains the quantized model files
|
122 |
+
βββ tokenizer_config/ # Tokenizer configuration and vocabulary files
|
123 |
+
βββ model.safetensors/ # Quantized Model
|
124 |
+
βββ README.md # Model documentation
|
125 |
+
```
|
126 |
+
|
127 |
+
---
|
128 |
+
## β οΈ Limitations
|
129 |
+
- The model may not generalize well to domains outside the fine-tuning dataset.
|
130 |
+
- Quantization may result in minor accuracy degradation compared to full-precision models.
|
131 |
+
|
132 |
+
---
|
133 |
+
## π€ Contributing
|
134 |
+
Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.
|