ayushsinha commited on
Commit
b33c1d1
Β·
verified Β·
1 Parent(s): acfec1f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +134 -0
README.md ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Named Entity Recognition (NER) with Roberta
2
+
3
+ ## πŸ“Œ Overview
4
+ This repository hosts the quantized version of the `roberta-base` model for Named Entity Recognition (NER) using the CoNLL-2003 dataset. The model is specifically designed to recognize entities related to **Person (PER), Organization (ORG), and Location (LOC)**. The model has been optimized for efficient deployment while maintaining high accuracy, making it suitable for resource-constrained environments.
5
+
6
+ ## πŸ— Model Details
7
+ - **Model Architecture**: Roberta Base
8
+ - **Task**: Named Entity Recognition (NER)
9
+ - **Dataset**: Hugging Face's CoNLL-2003
10
+ - **Quantization**: BrainFloat16
11
+ - **Fine-tuning Framework**: Hugging Face Transformers
12
+
13
+ ---
14
+ ## πŸš€ Usage
15
+
16
+ ### Installation
17
+ ```bash
18
+ pip install transformers torch
19
+ ```
20
+
21
+ ### Loading the Model
22
+ ```python
23
+ from transformers import RobertaTokenizerFast, RobertaForTokenClassification
24
+ import torch
25
+
26
+ device = "cuda" if torch.cuda.is_available() else "cpu"
27
+
28
+ model_name = "AventIQ-AI/roberta-named-entity-recognition"
29
+ model = RobertaForTokenClassification.from_pretrained(model_name).to(device)
30
+ tokenizer = RobertaTokenizerFast.from_pretrained(model_name)
31
+ ```
32
+
33
+ ### Named Entity Recognition Inference
34
+ ```python
35
+ label_list = ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-MISC", "I-MISC"]
36
+ ```
37
+ ### **πŸ”Ή Labeling Scheme (BIO Format)**
38
+
39
+ - **B-XYZ (Beginning)**: Indicates the beginning of an entity of type XYZ (e.g., B-PER for the beginning of a person’s name).
40
+ - **I-XYZ (Inside)**: Represents subsequent tokens inside an entity (e.g., I-PER for the second part of a person’s name).
41
+ - **O (Outside)**: Denotes tokens that are not part of any named entity.
42
+
43
+ ```
44
+ def predict_entities(text, model):
45
+
46
+ tokens = tokenizer(text, return_tensors="pt", truncation=True)
47
+ tokens = {key: val.to(device) for key, val in tokens.items()} # Move to CUDA
48
+
49
+ with torch.no_grad():
50
+ outputs = model(**tokens)
51
+
52
+ logits = outputs.logits # Extract logits
53
+ predictions = torch.argmax(logits, dim=2) # Get highest probability labels
54
+
55
+ tokens_list = tokenizer.convert_ids_to_tokens(tokens["input_ids"][0])
56
+ predicted_labels = [label_list[pred] for pred in predictions[0].cpu().numpy()]
57
+
58
+ final_tokens = []
59
+ final_labels = []
60
+ for token, label in zip(tokens_list, predicted_labels):
61
+ if token.startswith("##"):
62
+ final_tokens[-1] += token[2:] # Merge subword
63
+ else:
64
+ final_tokens.append(token)
65
+ final_labels.append(label)
66
+
67
+ for token, label in zip(final_tokens, final_labels):
68
+ if token not in ["[CLS]", "[SEP]"]:
69
+ print(f"{token}: {label}")
70
+
71
+ # πŸ” Test Example
72
+ sample_text = "Elon Musk is the CEO of Tesla, which is based in California."
73
+ predict_entities(sample_text, model)
74
+ ```
75
+ ---
76
+ ## πŸ“Š Evaluation Results for Quantized Model
77
+
78
+ ### **πŸ”Ή Overall Performance**
79
+
80
+ - **Accuracy**: **97.10%** βœ…
81
+ - **Precision**: **89.52%**
82
+ - **Recall**: **90.67%**
83
+ - **F1 Score**: **90.09%**
84
+
85
+ ---
86
+
87
+ ### **πŸ”Ή Performance by Entity Type**
88
+
89
+ | Entity Type | Precision | Recall | F1 Score | Number of Entities |
90
+ |------------|-----------|--------|----------|--------------------|
91
+ | **LOC** (Location) | **91.46%** | **92.07%** | **91.76%** | 3,000 |
92
+ | **MISC** (Miscellaneous) | **71.25%** | **72.83%** | **72.03%** | 1,266 |
93
+ | **ORG** (Organization) | **89.83%** | **93.02%** | **91.40%** | 3,524 |
94
+ | **PER** (Person) | **95.16%** | **94.04%** | **94.60%** | 2,989 |
95
+
96
+ ---
97
+ #### ⏳ **Inference Speed Metrics**
98
+ - **Total Evaluation Time**: 15.89 sec
99
+ - **Samples Processed per Second**: 217.26
100
+ - **Steps per Second**: 27.18
101
+ - **Epochs Completed**: 3
102
+
103
+ ---
104
+ ## Fine-Tuning Details
105
+ ### Dataset
106
+ The Hugging Face's `CoNLL-2003` dataset was used, containing texts and their ner tags.
107
+
108
+ ## πŸ“Š Training Details
109
+ - **Number of epochs**: 3
110
+ - **Batch size**: 8
111
+ - **Evaluation strategy**: epoch
112
+ - **Learning Rate**: 2e-5
113
+
114
+ ### ⚑ Quantization
115
+ Post-training quantization was applied using PyTorch's built-in quantization framework to reduce the model size and improve inference efficiency.
116
+
117
+ ---
118
+ ## πŸ“‚ Repository Structure
119
+ ```
120
+ .
121
+ β”œβ”€β”€ model/ # Contains the quantized model files
122
+ β”œβ”€β”€ tokenizer_config/ # Tokenizer configuration and vocabulary files
123
+ β”œβ”€β”€ model.safetensors/ # Quantized Model
124
+ β”œβ”€β”€ README.md # Model documentation
125
+ ```
126
+
127
+ ---
128
+ ## ⚠️ Limitations
129
+ - The model may not generalize well to domains outside the fine-tuning dataset.
130
+ - Quantization may result in minor accuracy degradation compared to full-precision models.
131
+
132
+ ---
133
+ ## 🀝 Contributing
134
+ Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.