File size: 2,689 Bytes
025942d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Model Card: BART-Based Content Generation Model

## Model Overview

This model is a fine-tuned version of `facebook/bart-base` trained for content generation tasks. It has been optimized for high-quality text generation while maintaining efficiency.

## Model Details

- **Model Architecture:** BART  
- **Base Model:** `facebook/bart-base`  
- **Task:** Content Generation  
- **Dataset:** cnn_dailymail  
- **Framework:** Hugging Face Transformers  
- **Training Hardware:** CUDA

## Installation

To use the model, install the necessary dependencies:

```sh
pip install transformers torch datasets evaluate
```

## Usage

### Load the Model and Tokenizer
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

# Load fine-tuned model
model_path = "fine_tuned_model"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForSeq2SeqLM.from_pretrained(model_path).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_path)

# Define test text
input_text = "Technology"
inputs = tokenizer(input_text, return_tensors="pt").to(device)

# Generate output
with torch.no_grad():
    output_ids = model.generate(**inputs)
    output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]

print(f"Generated Content: {output_text}")
```

## Training Details

### Data Preprocessing
The dataset was split into:
- **Train:** 80%  
- **Validation:** 10%  
- **Test:** 10%  

Tokenization was applied using the `facebook/bart-base` tokenizer with truncation and padding.

### Fine-Tuning
- **Epochs:** 3  
- **Batch Size:** 4  
- **Learning Rate:** 2e-5  
- **Weight Decay:** 0.01  
- **Evaluation Strategy:** Epoch-wise  

## Evaluation Metrics
The model was evaluated using the ROUGE metric:
```python
import evaluate
rouge = evaluate.load("rouge")

# Example evaluation
references = ["The generated story was highly creative and engaging."]
predictions = ["The output was imaginative and captivating."]
results = rouge.compute(predictions=predictions, references=references)
print("Evaluation Metrics (ROUGE):", results)
```

## Performance
- **ROUGE Score:** Achieved competitive scores for content generation quality  
- **Inference Speed:** Optimized for efficient text generation  
- **Generalization:** Works well on diverse text generation tasks but may require domain-specific fine-tuning.

## Limitations
- May generate slightly verbose or overly detailed content in some cases.
- Requires GPU for optimal performance.

## Future Improvements
- Experiment with larger models like `bart-large` for enhanced generation quality.
- Fine-tune on domain-specific datasets for better adaptation to specific content types.