varshamishra commited on
Commit
025942d
·
verified ·
1 Parent(s): 6af1dcd

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Card: BART-Based Content Generation Model
2
+
3
+ ## Model Overview
4
+
5
+ This model is a fine-tuned version of `facebook/bart-base` trained for content generation tasks. It has been optimized for high-quality text generation while maintaining efficiency.
6
+
7
+ ## Model Details
8
+
9
+ - **Model Architecture:** BART
10
+ - **Base Model:** `facebook/bart-base`
11
+ - **Task:** Content Generation
12
+ - **Dataset:** cnn_dailymail
13
+ - **Framework:** Hugging Face Transformers
14
+ - **Training Hardware:** CUDA
15
+
16
+ ## Installation
17
+
18
+ To use the model, install the necessary dependencies:
19
+
20
+ ```sh
21
+ pip install transformers torch datasets evaluate
22
+ ```
23
+
24
+ ## Usage
25
+
26
+ ### Load the Model and Tokenizer
27
+ ```python
28
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
29
+ import torch
30
+
31
+ # Load fine-tuned model
32
+ model_path = "fine_tuned_model"
33
+ device = "cuda" if torch.cuda.is_available() else "cpu"
34
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_path).to(device)
35
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
36
+
37
+ # Define test text
38
+ input_text = "Technology"
39
+ inputs = tokenizer(input_text, return_tensors="pt").to(device)
40
+
41
+ # Generate output
42
+ with torch.no_grad():
43
+ output_ids = model.generate(**inputs)
44
+ output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
45
+
46
+ print(f"Generated Content: {output_text}")
47
+ ```
48
+
49
+ ## Training Details
50
+
51
+ ### Data Preprocessing
52
+ The dataset was split into:
53
+ - **Train:** 80%
54
+ - **Validation:** 10%
55
+ - **Test:** 10%
56
+
57
+ Tokenization was applied using the `facebook/bart-base` tokenizer with truncation and padding.
58
+
59
+ ### Fine-Tuning
60
+ - **Epochs:** 3
61
+ - **Batch Size:** 4
62
+ - **Learning Rate:** 2e-5
63
+ - **Weight Decay:** 0.01
64
+ - **Evaluation Strategy:** Epoch-wise
65
+
66
+ ## Evaluation Metrics
67
+ The model was evaluated using the ROUGE metric:
68
+ ```python
69
+ import evaluate
70
+ rouge = evaluate.load("rouge")
71
+
72
+ # Example evaluation
73
+ references = ["The generated story was highly creative and engaging."]
74
+ predictions = ["The output was imaginative and captivating."]
75
+ results = rouge.compute(predictions=predictions, references=references)
76
+ print("Evaluation Metrics (ROUGE):", results)
77
+ ```
78
+
79
+ ## Performance
80
+ - **ROUGE Score:** Achieved competitive scores for content generation quality
81
+ - **Inference Speed:** Optimized for efficient text generation
82
+ - **Generalization:** Works well on diverse text generation tasks but may require domain-specific fine-tuning.
83
+
84
+ ## Limitations
85
+ - May generate slightly verbose or overly detailed content in some cases.
86
+ - Requires GPU for optimal performance.
87
+
88
+ ## Future Improvements
89
+ - Experiment with larger models like `bart-large` for enhanced generation quality.
90
+ - Fine-tune on domain-specific datasets for better adaptation to specific content types.
91
+