Augusto777's picture
End of training
b6ccbec verified
|
raw
history blame
4.1 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-DMAE-ex
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.45652173913043476

swinv2-tiny-patch4-window8-256-DMAE-ex

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6895
  • Accuracy: 0.4565

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 7.5017 0.1087
No log 2.0 7 1.6895 0.4565
4.88 2.86 10 4.1382 0.1087
4.88 4.0 14 1.5189 0.4565
4.88 4.86 17 1.4064 0.3261
1.7482 6.0 21 1.3558 0.4565
1.7482 6.86 24 1.3180 0.3261
1.7482 8.0 28 1.2378 0.3261
1.3281 8.86 31 1.3390 0.4565
1.3281 10.0 35 1.2144 0.4565
1.3281 10.86 38 1.2492 0.3261
1.2367 12.0 42 1.2685 0.4565
1.2367 12.86 45 1.2390 0.4565
1.2367 14.0 49 1.2648 0.3261
1.2707 14.86 52 1.2209 0.4565
1.2707 16.0 56 1.2628 0.4565
1.2707 16.86 59 1.2173 0.4565
1.2699 18.0 63 1.2145 0.4565
1.2699 18.86 66 1.2334 0.4348
1.2509 20.0 70 1.2693 0.4565
1.2509 20.86 73 1.2041 0.4565
1.2509 22.0 77 1.2307 0.3696
1.1936 22.86 80 1.2172 0.4565
1.1936 24.0 84 1.2109 0.4565
1.1936 24.86 87 1.2051 0.4565
1.1629 26.0 91 1.2084 0.4565
1.1629 26.86 94 1.2218 0.4565
1.1629 28.0 98 1.2294 0.4565
1.1606 28.86 101 1.2060 0.4565
1.1606 30.0 105 1.2063 0.4130
1.1606 30.86 108 1.2119 0.4130
1.1525 32.0 112 1.2073 0.4565
1.1525 32.86 115 1.1995 0.4565
1.1525 34.0 119 1.1954 0.4565
1.1326 34.29 120 1.1950 0.4565

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0