distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5362
- Accuracy: 0.82
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9881 | 1.0 | 113 | 1.8088 | 0.45 |
1.4015 | 2.0 | 226 | 1.2665 | 0.63 |
1.0325 | 3.0 | 339 | 0.9793 | 0.72 |
0.8844 | 4.0 | 452 | 0.8951 | 0.73 |
0.5932 | 5.0 | 565 | 0.7416 | 0.76 |
0.3958 | 6.0 | 678 | 0.6143 | 0.79 |
0.446 | 7.0 | 791 | 0.5115 | 0.83 |
0.1893 | 8.0 | 904 | 0.4992 | 0.85 |
0.24 | 9.0 | 1017 | 0.5084 | 0.85 |
0.1947 | 10.0 | 1130 | 0.5362 | 0.82 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3
- Downloads last month
- 159
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Arch4ngel/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert