|
--- |
|
license: mit |
|
base_model: prajjwal1/bert-tiny |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: BP-test4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BP-test4 |
|
|
|
This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1958 |
|
- Accuracy: 0.95 |
|
- F1: 0.9499 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| No log | 0.01 | 50 | 0.6942 | 0.45 | 0.2793 | |
|
| No log | 0.02 | 100 | 0.6915 | 0.57 | 0.4337 | |
|
| No log | 0.03 | 150 | 0.6879 | 0.55 | 0.3903 | |
|
| No log | 0.04 | 200 | 0.6904 | 0.56 | 0.5607 | |
|
| No log | 0.05 | 250 | 0.6847 | 0.56 | 0.5607 | |
|
| No log | 0.06 | 300 | 0.6693 | 0.56 | 0.5607 | |
|
| No log | 0.07 | 350 | 0.5499 | 0.9 | 0.8998 | |
|
| No log | 0.08 | 400 | 0.4220 | 0.93 | 0.9295 | |
|
| No log | 0.09 | 450 | 0.3421 | 0.93 | 0.9295 | |
|
| 0.6127 | 0.1 | 500 | 0.2987 | 0.93 | 0.9295 | |
|
| 0.6127 | 0.11 | 550 | 0.2704 | 0.93 | 0.9295 | |
|
| 0.6127 | 0.12 | 600 | 0.2530 | 0.93 | 0.9295 | |
|
| 0.6127 | 0.13 | 650 | 0.2199 | 0.93 | 0.9297 | |
|
| 0.6127 | 0.14 | 700 | 0.2204 | 0.93 | 0.9295 | |
|
| 0.6127 | 0.15 | 750 | 0.1965 | 0.95 | 0.9499 | |
|
| 0.6127 | 0.16 | 800 | 0.1944 | 0.95 | 0.9499 | |
|
| 0.6127 | 0.17 | 850 | 0.1942 | 0.95 | 0.9499 | |
|
| 0.6127 | 0.18 | 900 | 0.1938 | 0.95 | 0.9499 | |
|
| 0.6127 | 0.19 | 950 | 0.1950 | 0.95 | 0.9499 | |
|
| 0.2388 | 0.2 | 1000 | 0.1943 | 0.95 | 0.9499 | |
|
| 0.2388 | 0.2 | 1050 | 0.1939 | 0.95 | 0.9499 | |
|
| 0.2388 | 0.21 | 1100 | 0.1939 | 0.95 | 0.9499 | |
|
| 0.2388 | 0.22 | 1150 | 0.1928 | 0.95 | 0.9499 | |
|
| 0.2388 | 0.23 | 1200 | 0.1937 | 0.95 | 0.9499 | |
|
| 0.2388 | 0.24 | 1250 | 0.1958 | 0.95 | 0.9499 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|