|
--- |
|
license: apache-2.0 |
|
base_model: Helsinki-NLP/opus-mt-en-ro |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: opus-mt-en-ro-finetuned-src-to-tgt |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# opus-mt-en-ro-finetuned-src-to-tgt |
|
|
|
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.4552 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| No log | 1.0 | 35 | 2.8624 | |
|
| No log | 2.0 | 70 | 2.6600 | |
|
| No log | 3.0 | 105 | 2.5610 | |
|
| No log | 4.0 | 140 | 2.5369 | |
|
| No log | 5.0 | 175 | 2.4976 | |
|
| No log | 6.0 | 210 | 2.4731 | |
|
| No log | 7.0 | 245 | 2.4463 | |
|
| No log | 8.0 | 280 | 2.4558 | |
|
| No log | 9.0 | 315 | 2.4386 | |
|
| No log | 10.0 | 350 | 2.4377 | |
|
| No log | 11.0 | 385 | 2.4342 | |
|
| No log | 12.0 | 420 | 2.4332 | |
|
| No log | 13.0 | 455 | 2.4401 | |
|
| No log | 14.0 | 490 | 2.4453 | |
|
| 2.3749 | 15.0 | 525 | 2.4237 | |
|
| 2.3749 | 16.0 | 560 | 2.4336 | |
|
| 2.3749 | 17.0 | 595 | 2.4262 | |
|
| 2.3749 | 18.0 | 630 | 2.4340 | |
|
| 2.3749 | 19.0 | 665 | 2.4358 | |
|
| 2.3749 | 20.0 | 700 | 2.4423 | |
|
| 2.3749 | 21.0 | 735 | 2.4370 | |
|
| 2.3749 | 22.0 | 770 | 2.4404 | |
|
| 2.3749 | 23.0 | 805 | 2.4451 | |
|
| 2.3749 | 24.0 | 840 | 2.4482 | |
|
| 2.3749 | 25.0 | 875 | 2.4477 | |
|
| 2.3749 | 26.0 | 910 | 2.4503 | |
|
| 2.3749 | 27.0 | 945 | 2.4533 | |
|
| 2.3749 | 28.0 | 980 | 2.4570 | |
|
| 2.1075 | 29.0 | 1015 | 2.4564 | |
|
| 2.1075 | 30.0 | 1050 | 2.4552 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|