Amite5h's picture
Upload 3 files
00a9dd7
import tensorflow as tf
import os
import json
import pandas as pd
import re
import numpy as np
import time
import matplotlib.pyplot as plt
import collections
import random
import pickle
import requests
import json
from math import sqrt
from PIL import Image
from tqdm.auto import tqdm
MAX_LENGTH = 40
VOCABULARY_SIZE = 17000
BATCH_SIZE = 64
BUFFER_SIZE = 1000
EMBEDDING_DIM = 512
UNITS = 512
EPOCHS = 8
vocab = pickle.load(open('vocab_coco.file', 'rb'))
tokenizer = tf.keras.layers.TextVectorization(
# max_tokens=VOCABULARY_SIZE,
standardize=None,
output_sequence_length=MAX_LENGTH,
vocabulary=vocab
)
idx2word = tf.keras.layers.StringLookup(
mask_token="",
vocabulary=tokenizer.get_vocabulary(),
invert=True
)
def CNN_Encoder():
inception_v3 = tf.keras.applications.InceptionV3(
include_top=False, #we are not doing classification on image net so we have to drop last dense layers
weights='imagenet'
)
output = inception_v3.output
print(output.shape)
output = tf.keras.layers.Reshape(
(-1, output.shape[-1]))(output)
print(output.shape)
cnn_model = tf.keras.models.Model(inception_v3.input, output)
return cnn_model
class TransformerEncoderLayer(tf.keras.layers.Layer):
def __init__(self, embed_dim, num_heads):
super().__init__()
self.layer_norm_1 = tf.keras.layers.LayerNormalization()
self.layer_norm_2 = tf.keras.layers.LayerNormalization()
self.attention = tf.keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim)
self.dense = tf.keras.layers.Dense(embed_dim, activation="relu")
def call(self, x, training):
x = self.layer_norm_1(x)
x = self.dense(x)
attn_output = self.attention(
query=x,
value=x,
key=x,
attention_mask=None,
training=training
)
x = self.layer_norm_2(x + attn_output) #skip connection
return x
# combines token embeddings and position embeddings
class Embeddings(tf.keras.layers.Layer):
def __init__(self, vocab_size, embed_dim, max_len):
super().__init__()
self.token_embeddings = tf.keras.layers.Embedding(
vocab_size, embed_dim)
self.position_embeddings = tf.keras.layers.Embedding(
max_len, embed_dim, input_shape=(None, max_len))
def call(self, input_ids):
length = tf.shape(input_ids)[-1]
#calculate the total length of input sequence so that it would be used to calculate positional id
position_ids = tf.range(start=0, limit=length, delta=1)
#give id positional id to each word in caption
position_ids = tf.expand_dims(position_ids, axis=0)
#This is done to match the shape of the input tensor when performing element-wise addition in the next step.
token_embeddings = self.token_embeddings(input_ids)
#so we are creating token embedding for input ids
position_embeddings = self.position_embeddings(position_ids)
#but we are creating postion embedding with position_ids only
return token_embeddings + position_embeddings
class TransformerDecoderLayer(tf.keras.layers.Layer):
def __init__(self, embed_dim, units, num_heads):
super().__init__()
self.embedding = Embeddings(
tokenizer.vocabulary_size(), embed_dim, MAX_LENGTH)
#embedding from
self.attention_1 = tf.keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
)
self.attention_2 = tf.keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
)
self.layernorm_1 = tf.keras.layers.LayerNormalization()
self.layernorm_2 = tf.keras.layers.LayerNormalization()
self.layernorm_3 = tf.keras.layers.LayerNormalization()
self.ffn_layer_1 = tf.keras.layers.Dense(units, activation="relu")
self.ffn_layer_2 = tf.keras.layers.Dense(embed_dim)
self.out = tf.keras.layers.Dense(tokenizer.vocabulary_size(), activation="softmax")
self.dropout_1 = tf.keras.layers.Dropout(0.3)
self.dropout_2 = tf.keras.layers.Dropout(0.5)
def call(self, input_ids, encoder_output, training, mask=None):
embeddings = self.embedding(input_ids)
combined_mask = None
padding_mask = None
if mask is not None:
causal_mask = self.get_causal_attention_mask(embeddings)
padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32)
combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32)
combined_mask = tf.minimum(combined_mask, causal_mask)
#this layer contain masked self attention layer
attn_output_1 = self.attention_1(
query=embeddings,
value=embeddings,
key=embeddings,
attention_mask=combined_mask,
training=training
)
#this layer contain cross attention
#which is taking query vector from the previous masked attention and key and value vector from encoder so that some information of input is there
#Expalin:
out_1 = self.layernorm_1(embeddings + attn_output_1)
attn_output_2 = self.attention_2(
query=out_1, #query vector from deocder
value=encoder_output, #key and value vector from encoder
key=encoder_output,
attention_mask=padding_mask, #no masking is there
training=training
)
out_2 = self.layernorm_2(out_1 + attn_output_2) #skip connection
ffn_out = self.ffn_layer_1(out_2)
ffn_out = self.dropout_1(ffn_out, training=training)
ffn_out = self.ffn_layer_2(ffn_out)
ffn_out = self.layernorm_3(ffn_out + out_2)
ffn_out = self.dropout_2(ffn_out, training=training)
preds = self.out(ffn_out)
return preds
def get_causal_attention_mask(self, inputs):
input_shape = tf.shape(inputs)
batch_size, sequence_length = input_shape[0], input_shape[1]
i = tf.range(sequence_length)[:, tf.newaxis]
j = tf.range(sequence_length)
mask = tf.cast(i >= j, dtype="int32")
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
mult = tf.concat(
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
axis=0
)
return tf.tile(mask, mult)
class ImageCaptioningModel(tf.keras.Model):
def __init__(self, cnn_model, encoder, decoder, image_aug=None):
super().__init__()
self.cnn_model = cnn_model
self.encoder = encoder
self.decoder = decoder
self.image_aug = image_aug
self.loss_tracker = tf.keras.metrics.Mean(name="loss")
self.acc_tracker = tf.keras.metrics.Mean(name="accuracy")
def calculate_loss(self, y_true, y_pred, mask):
loss = self.loss(y_true, y_pred)
mask = tf.cast(mask, dtype=loss.dtype)
loss *= mask
return tf.reduce_sum(loss) / tf.reduce_sum(mask)
def calculate_accuracy(self, y_true, y_pred, mask):
accuracy = tf.equal(y_true, tf.argmax(y_pred, axis=2))
accuracy = tf.math.logical_and(mask, accuracy)
accuracy = tf.cast(accuracy, dtype=tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
return tf.reduce_sum(accuracy) / tf.reduce_sum(mask)
def compute_loss_and_acc(self, img_embed, captions, training=True):
encoder_output = self.encoder(img_embed, training=True)
y_input = captions[:, :-1]
y_true = captions[:, 1:]
mask = (y_true != 0)
y_pred = self.decoder(
y_input, encoder_output, training=True, mask=mask
)
loss = self.calculate_loss(y_true, y_pred, mask)
acc = self.calculate_accuracy(y_true, y_pred, mask)
return loss, acc
def train_step(self, batch):
imgs, captions = batch
if self.image_aug:
imgs = self.image_aug(imgs)
img_embed = self.cnn_model(imgs)
with tf.GradientTape() as tape:
loss, acc = self.compute_loss_and_acc(
img_embed, captions
)
train_vars = (
self.encoder.trainable_variables + self.decoder.trainable_variables
)
grads = tape.gradient(loss, train_vars)
self.optimizer.apply_gradients(zip(grads, train_vars))
self.loss_tracker.update_state(loss)
self.acc_tracker.update_state(acc)
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
def test_step(self, batch):
imgs, captions = batch
img_embed = self.cnn_model(imgs)
loss, acc = self.compute_loss_and_acc(
img_embed, captions, training=False
)
self.loss_tracker.update_state(loss)
self.acc_tracker.update_state(acc)
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
@property
def metrics(self):
return [self.loss_tracker, self.acc_tracker]
def load_image_from_path(img_path):
img = tf.io.read_file(img_path)
img = tf.io.decode_jpeg(img, channels=3)
img = tf.keras.layers.Resizing(299, 299)(img)
img = tf.keras.applications.inception_v3.preprocess_input(img)
return img
def generate_caption(img_path, add_noise=False):
img = load_image_from_path(img_path)
if add_noise:
noise = tf.random.normal(img.shape)*0.1
img = img + noise
img = (img - tf.reduce_min(img))/(tf.reduce_max(img) - tf.reduce_min(img))
img = tf.expand_dims(img, axis=0)
img_embed = model.cnn_model(img)
img_encoded = model.encoder(img_embed, training=False)
y_inp = '[start]'
for i in range(MAX_LENGTH-1):
tokenized = tokenizer([y_inp])[:, :-1]
mask = tf.cast(tokenized != 0, tf.int32)
pred = model.decoder(
tokenized, img_encoded, training=False, mask=mask)
pred_idx = np.argmax(pred[0, i, :])
pred_idx = tf.convert_to_tensor(pred_idx)
pred_word = idx2word(pred_idx).numpy().decode('utf-8')
if pred_word == '[end]':
break
y_inp += ' ' + pred_word
y_inp = y_inp.replace('[start] ', '')
return y_inp
def get_caption_model():
encoder = TransformerEncoderLayer(EMBEDDING_DIM, 1)
decoder = TransformerDecoderLayer(EMBEDDING_DIM, UNITS, 8)
cnn_model = CNN_Encoder()
caption_mode = ImageCaptioningModel(
cnn_model=cnn_model, encoder=encoder, decoder=decoder, image_aug=None,
)
def call_fn(batch, training):
return batch
caption_mode.call = call_fn
sample_x, sample_y = tf.random.normal((1, 299, 299, 3)), tf.zeros((1, 40))
caption_mode((sample_x, sample_y))
sample_img_embed = caption_mode.cnn_model(sample_x)
sample_enc_out = caption_mode.encoder(sample_img_embed, training=False)
caption_mode.decoder(sample_y, sample_enc_out, training=False)
caption_mode.load_weights('model.h5')
return caption_mode