File size: 11,308 Bytes
00a9dd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import tensorflow as tf
import os
import json
import pandas as pd
import re
import numpy as np
import time
import matplotlib.pyplot as plt
import collections
import random
import pickle
import requests
import json
from math import sqrt
from PIL import Image
from tqdm.auto import tqdm
MAX_LENGTH = 40
VOCABULARY_SIZE = 17000
BATCH_SIZE = 64
BUFFER_SIZE = 1000
EMBEDDING_DIM = 512
UNITS = 512
EPOCHS = 8
vocab = pickle.load(open('vocab_coco.file', 'rb'))
tokenizer = tf.keras.layers.TextVectorization(
# max_tokens=VOCABULARY_SIZE,
standardize=None,
output_sequence_length=MAX_LENGTH,
vocabulary=vocab
)
idx2word = tf.keras.layers.StringLookup(
mask_token="",
vocabulary=tokenizer.get_vocabulary(),
invert=True
)
def CNN_Encoder():
inception_v3 = tf.keras.applications.InceptionV3(
include_top=False, #we are not doing classification on image net so we have to drop last dense layers
weights='imagenet'
)
output = inception_v3.output
print(output.shape)
output = tf.keras.layers.Reshape(
(-1, output.shape[-1]))(output)
print(output.shape)
cnn_model = tf.keras.models.Model(inception_v3.input, output)
return cnn_model
class TransformerEncoderLayer(tf.keras.layers.Layer):
def __init__(self, embed_dim, num_heads):
super().__init__()
self.layer_norm_1 = tf.keras.layers.LayerNormalization()
self.layer_norm_2 = tf.keras.layers.LayerNormalization()
self.attention = tf.keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim)
self.dense = tf.keras.layers.Dense(embed_dim, activation="relu")
def call(self, x, training):
x = self.layer_norm_1(x)
x = self.dense(x)
attn_output = self.attention(
query=x,
value=x,
key=x,
attention_mask=None,
training=training
)
x = self.layer_norm_2(x + attn_output) #skip connection
return x
# combines token embeddings and position embeddings
class Embeddings(tf.keras.layers.Layer):
def __init__(self, vocab_size, embed_dim, max_len):
super().__init__()
self.token_embeddings = tf.keras.layers.Embedding(
vocab_size, embed_dim)
self.position_embeddings = tf.keras.layers.Embedding(
max_len, embed_dim, input_shape=(None, max_len))
def call(self, input_ids):
length = tf.shape(input_ids)[-1]
#calculate the total length of input sequence so that it would be used to calculate positional id
position_ids = tf.range(start=0, limit=length, delta=1)
#give id positional id to each word in caption
position_ids = tf.expand_dims(position_ids, axis=0)
#This is done to match the shape of the input tensor when performing element-wise addition in the next step.
token_embeddings = self.token_embeddings(input_ids)
#so we are creating token embedding for input ids
position_embeddings = self.position_embeddings(position_ids)
#but we are creating postion embedding with position_ids only
return token_embeddings + position_embeddings
class TransformerDecoderLayer(tf.keras.layers.Layer):
def __init__(self, embed_dim, units, num_heads):
super().__init__()
self.embedding = Embeddings(
tokenizer.vocabulary_size(), embed_dim, MAX_LENGTH)
#embedding from
self.attention_1 = tf.keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
)
self.attention_2 = tf.keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
)
self.layernorm_1 = tf.keras.layers.LayerNormalization()
self.layernorm_2 = tf.keras.layers.LayerNormalization()
self.layernorm_3 = tf.keras.layers.LayerNormalization()
self.ffn_layer_1 = tf.keras.layers.Dense(units, activation="relu")
self.ffn_layer_2 = tf.keras.layers.Dense(embed_dim)
self.out = tf.keras.layers.Dense(tokenizer.vocabulary_size(), activation="softmax")
self.dropout_1 = tf.keras.layers.Dropout(0.3)
self.dropout_2 = tf.keras.layers.Dropout(0.5)
def call(self, input_ids, encoder_output, training, mask=None):
embeddings = self.embedding(input_ids)
combined_mask = None
padding_mask = None
if mask is not None:
causal_mask = self.get_causal_attention_mask(embeddings)
padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32)
combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32)
combined_mask = tf.minimum(combined_mask, causal_mask)
#this layer contain masked self attention layer
attn_output_1 = self.attention_1(
query=embeddings,
value=embeddings,
key=embeddings,
attention_mask=combined_mask,
training=training
)
#this layer contain cross attention
#which is taking query vector from the previous masked attention and key and value vector from encoder so that some information of input is there
#Expalin:
out_1 = self.layernorm_1(embeddings + attn_output_1)
attn_output_2 = self.attention_2(
query=out_1, #query vector from deocder
value=encoder_output, #key and value vector from encoder
key=encoder_output,
attention_mask=padding_mask, #no masking is there
training=training
)
out_2 = self.layernorm_2(out_1 + attn_output_2) #skip connection
ffn_out = self.ffn_layer_1(out_2)
ffn_out = self.dropout_1(ffn_out, training=training)
ffn_out = self.ffn_layer_2(ffn_out)
ffn_out = self.layernorm_3(ffn_out + out_2)
ffn_out = self.dropout_2(ffn_out, training=training)
preds = self.out(ffn_out)
return preds
def get_causal_attention_mask(self, inputs):
input_shape = tf.shape(inputs)
batch_size, sequence_length = input_shape[0], input_shape[1]
i = tf.range(sequence_length)[:, tf.newaxis]
j = tf.range(sequence_length)
mask = tf.cast(i >= j, dtype="int32")
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
mult = tf.concat(
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
axis=0
)
return tf.tile(mask, mult)
class ImageCaptioningModel(tf.keras.Model):
def __init__(self, cnn_model, encoder, decoder, image_aug=None):
super().__init__()
self.cnn_model = cnn_model
self.encoder = encoder
self.decoder = decoder
self.image_aug = image_aug
self.loss_tracker = tf.keras.metrics.Mean(name="loss")
self.acc_tracker = tf.keras.metrics.Mean(name="accuracy")
def calculate_loss(self, y_true, y_pred, mask):
loss = self.loss(y_true, y_pred)
mask = tf.cast(mask, dtype=loss.dtype)
loss *= mask
return tf.reduce_sum(loss) / tf.reduce_sum(mask)
def calculate_accuracy(self, y_true, y_pred, mask):
accuracy = tf.equal(y_true, tf.argmax(y_pred, axis=2))
accuracy = tf.math.logical_and(mask, accuracy)
accuracy = tf.cast(accuracy, dtype=tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
return tf.reduce_sum(accuracy) / tf.reduce_sum(mask)
def compute_loss_and_acc(self, img_embed, captions, training=True):
encoder_output = self.encoder(img_embed, training=True)
y_input = captions[:, :-1]
y_true = captions[:, 1:]
mask = (y_true != 0)
y_pred = self.decoder(
y_input, encoder_output, training=True, mask=mask
)
loss = self.calculate_loss(y_true, y_pred, mask)
acc = self.calculate_accuracy(y_true, y_pred, mask)
return loss, acc
def train_step(self, batch):
imgs, captions = batch
if self.image_aug:
imgs = self.image_aug(imgs)
img_embed = self.cnn_model(imgs)
with tf.GradientTape() as tape:
loss, acc = self.compute_loss_and_acc(
img_embed, captions
)
train_vars = (
self.encoder.trainable_variables + self.decoder.trainable_variables
)
grads = tape.gradient(loss, train_vars)
self.optimizer.apply_gradients(zip(grads, train_vars))
self.loss_tracker.update_state(loss)
self.acc_tracker.update_state(acc)
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
def test_step(self, batch):
imgs, captions = batch
img_embed = self.cnn_model(imgs)
loss, acc = self.compute_loss_and_acc(
img_embed, captions, training=False
)
self.loss_tracker.update_state(loss)
self.acc_tracker.update_state(acc)
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
@property
def metrics(self):
return [self.loss_tracker, self.acc_tracker]
def load_image_from_path(img_path):
img = tf.io.read_file(img_path)
img = tf.io.decode_jpeg(img, channels=3)
img = tf.keras.layers.Resizing(299, 299)(img)
img = tf.keras.applications.inception_v3.preprocess_input(img)
return img
def generate_caption(img_path, add_noise=False):
img = load_image_from_path(img_path)
if add_noise:
noise = tf.random.normal(img.shape)*0.1
img = img + noise
img = (img - tf.reduce_min(img))/(tf.reduce_max(img) - tf.reduce_min(img))
img = tf.expand_dims(img, axis=0)
img_embed = model.cnn_model(img)
img_encoded = model.encoder(img_embed, training=False)
y_inp = '[start]'
for i in range(MAX_LENGTH-1):
tokenized = tokenizer([y_inp])[:, :-1]
mask = tf.cast(tokenized != 0, tf.int32)
pred = model.decoder(
tokenized, img_encoded, training=False, mask=mask)
pred_idx = np.argmax(pred[0, i, :])
pred_idx = tf.convert_to_tensor(pred_idx)
pred_word = idx2word(pred_idx).numpy().decode('utf-8')
if pred_word == '[end]':
break
y_inp += ' ' + pred_word
y_inp = y_inp.replace('[start] ', '')
return y_inp
def get_caption_model():
encoder = TransformerEncoderLayer(EMBEDDING_DIM, 1)
decoder = TransformerDecoderLayer(EMBEDDING_DIM, UNITS, 8)
cnn_model = CNN_Encoder()
caption_mode = ImageCaptioningModel(
cnn_model=cnn_model, encoder=encoder, decoder=decoder, image_aug=None,
)
def call_fn(batch, training):
return batch
caption_mode.call = call_fn
sample_x, sample_y = tf.random.normal((1, 299, 299, 3)), tf.zeros((1, 40))
caption_mode((sample_x, sample_y))
sample_img_embed = caption_mode.cnn_model(sample_x)
sample_enc_out = caption_mode.encoder(sample_img_embed, training=False)
caption_mode.decoder(sample_y, sample_enc_out, training=False)
caption_mode.load_weights('model.h5')
return caption_mode
|