Aman's picture
Update README.md
6825b98 verified
|
raw
history blame
1.21 kB
metadata
license: mit
tags:
  - text generation
  - RAG
  - baichuan2

This model is a 7B Chinese version of Self-RAG.

It is trained on Baichuan2-7B-Chat with a sample of belle sft data, acompanying with interleaving passages from zhwiki. The reflection tokens are aligned with the original verison (in English), so the usage is the same. Hope you enjoy.

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
from vllm import LLM, SamplingParams

model = LLM(YOUR_MODEL_PATH, dtype="half")
sampling_params = SamplingParams(temperature=0.0, top_p=1.0, max_tokens=100, skip_special_tokens=False)

def format_prompt(input, paragraph=None):
prompt = "### Instruction:\n{0}\n\n### Response:\n".format(input)
if paragraph is not None:
prompt += "[Retrieval]<paragraph>{0}</paragraph>".format(paragraph)
return prompt

query_1 = "你好"
query_2 = "世界最高的山峰是什么?"
queries = [query_1, query_2]

preds = model.generate([format_prompt(query) for query in queries], sampling_params)
for pred in preds:
print("Model prediction: {0}".format(pred.outputs[0].text))
# Model prediction: