|
--- |
|
license: mit |
|
tags: |
|
- text generation |
|
- RAG |
|
- baichuan2 |
|
--- |
|
|
|
This model is a 7B Chinese version of [Self-RAG](https://huggingface.co/selfrag/selfrag_llama2_7b). |
|
|
|
It is trained on Baichuan2-7B-Chat with a sample of [belle](https://github.com/LianjiaTech/BELLE) sft data, acompanying with interleaving passages from zhwiki. The reflection tokens are aligned with the original verison (in English), so the usage is the same. Hope you enjoy. |
|
|
|
### Usage |
|
I found some output errors while adopting vllm to accelerate the generation process and not sure whether it is due to some precision issues. |
|
This may be owing to the implementation of vllm. Thus, I use the original generate method of transformers. |
|
``` |
|
import os, torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(YOUR_TOKENIZER_PATH) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
YOUR_MODEL_PATH, |
|
torch_dtype=torch.bfloat16, |
|
device_map="cuda", |
|
) |
|
|
|
### set your retriever if necessary |
|
retriever = setup_retriever(YOUR_RETRIEVER_PATH) |
|
|
|
|
|
def format_prompt(input, paragraph=None): |
|
prompt = "### Instruction:\n{0}\n\n### Response:".format(input) |
|
if paragraph is not None: |
|
prompt += "[Retrieval]<paragraph>{0}</paragraph>".format(paragraph) |
|
return prompt |
|
|
|
|
|
while True: |
|
query = input("[Human]: ") |
|
prompt = format_prompt(query) |
|
sequences = model.generate( |
|
**tokenizer(prompt, return_tensors='pt').to(model.device), |
|
do_sample=False, |
|
num_beams=5, |
|
# top_k=10, |
|
# top_p=0.8, |
|
temperature=0.9, |
|
num_return_sequences=1, |
|
eos_token_id=tokenizer.eos_token_id, |
|
max_new_tokens=1024, |
|
min_new_tokens=1, |
|
repetition_penalty=1.5, |
|
) |
|
for seq in sequences: |
|
print(f"[Model]: {tokenizer.decode(seq, skip_special_tokens=False)}") |
|
print("-"*50) |
|
print("="*50) |
|
|
|
# query_1 = "你好呀" |
|
# Model prediction: [No Retrieval] 你好!有什么我可以帮你解答的问题吗? [Utility:5] </s> |
|
# query_2 = "故宫三大殿是哪些?" |
|
# Model prediction: [Retrieval] <paragraph> ... (this query requires factual grounding, call a retriever) </paragraph> [Relevant] 太和殿、中和殿、保和殿 [Utility:5] </s> |
|
``` |
|
|
|
### Data |
|
The data used to train the model is also available ([FINAL_OUTPUT_4w.jsonl](https://huggingface.co/Aman/selfrag-zh_baichuan2_7b_chat/blob/main/FINAL_OUTPUT_4w.jsonl)), which is constructed using [Belle](https://github.com/LianjiaTech/BELLE/tree/main/data/1.5M) SFT data and Wikipedia Chinese docs. |
|
Hope you enjoy it! |
|
|
|
|