See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2-0.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c64ff0d01392d1e4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c64ff0d01392d1e4_train_data.json
type:
field_instruction: prompt_type
field_output: prompt_text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/c31a0826-774c-48af-86bb-629bd7ef2583
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 8832
micro_batch_size: 4
mlflow_experiment_name: /tmp/c64ff0d01392d1e4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: fb46a0d2-7710-4f02-ba9b-a717c0c8c0cd
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: fb46a0d2-7710-4f02-ba9b-a717c0c8c0cd
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
c31a0826-774c-48af-86bb-629bd7ef2583
This model is a fine-tuned version of Qwen/Qwen2-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8095
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 3084
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.3671 | 0.0006 | 1 | 5.3415 |
3.1325 | 0.0649 | 100 | 3.3948 |
3.3967 | 0.1297 | 200 | 3.2506 |
2.9834 | 0.1946 | 300 | 3.1461 |
2.6376 | 0.2594 | 400 | 3.0808 |
3.4206 | 0.3243 | 500 | 2.9966 |
3.0461 | 0.3892 | 600 | 2.9330 |
2.2323 | 0.4540 | 700 | 2.8605 |
2.7525 | 0.5189 | 800 | 2.7908 |
2.8358 | 0.5838 | 900 | 2.7131 |
2.8312 | 0.6486 | 1000 | 2.6433 |
2.4678 | 0.7135 | 1100 | 2.5774 |
2.5489 | 0.7783 | 1200 | 2.5080 |
2.3458 | 0.8432 | 1300 | 2.4473 |
2.3761 | 0.9081 | 1400 | 2.3796 |
2.0236 | 0.9729 | 1500 | 2.3125 |
1.9383 | 1.0378 | 1600 | 2.2606 |
1.8816 | 1.1026 | 1700 | 2.1880 |
1.8313 | 1.1675 | 1800 | 2.1419 |
1.9847 | 1.2324 | 1900 | 2.0941 |
1.8436 | 1.2972 | 2000 | 2.0431 |
1.6931 | 1.3621 | 2100 | 2.0023 |
1.593 | 1.4269 | 2200 | 1.9543 |
1.8932 | 1.4918 | 2300 | 1.9170 |
2.0395 | 1.5567 | 2400 | 1.8831 |
1.7951 | 1.6215 | 2500 | 1.8598 |
1.5655 | 1.6864 | 2600 | 1.8419 |
1.2855 | 1.7513 | 2700 | 1.8256 |
1.4709 | 1.8161 | 2800 | 1.8161 |
1.7402 | 1.8810 | 2900 | 1.8116 |
1.7177 | 1.9458 | 3000 | 1.8095 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.