|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- Fraser/short-jokes |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: gpt2-jokes |
|
results: |
|
- task: |
|
name: Causal Language Modeling |
|
type: text-generation |
|
dataset: |
|
name: Fraser/short-jokes |
|
type: Fraser/short-jokes |
|
config: default |
|
split: train[:5%] |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8795507387461411 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gpt2-jokes |
|
|
|
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the Fraser/short-jokes dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6748 |
|
- Accuracy: 0.8796 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 0.06 | 100 | 0.7285 | 0.8732 | |
|
| No log | 0.12 | 200 | 0.7141 | 0.8747 | |
|
| No log | 0.17 | 300 | 0.7056 | 0.8757 | |
|
| No log | 0.23 | 400 | 0.6992 | 0.8764 | |
|
| 0.7907 | 0.29 | 500 | 0.6942 | 0.8771 | |
|
| 0.7907 | 0.35 | 600 | 0.6906 | 0.8777 | |
|
| 0.7907 | 0.41 | 700 | 0.6873 | 0.8779 | |
|
| 0.7907 | 0.47 | 800 | 0.6848 | 0.8782 | |
|
| 0.7907 | 0.52 | 900 | 0.6830 | 0.8786 | |
|
| 0.7105 | 0.58 | 1000 | 0.6809 | 0.8788 | |
|
| 0.7105 | 0.64 | 1100 | 0.6794 | 0.8790 | |
|
| 0.7105 | 0.7 | 1200 | 0.6780 | 0.8792 | |
|
| 0.7105 | 0.76 | 1300 | 0.6770 | 0.8793 | |
|
| 0.7105 | 0.81 | 1400 | 0.6760 | 0.8794 | |
|
| 0.7034 | 0.87 | 1500 | 0.6755 | 0.8794 | |
|
| 0.7034 | 0.93 | 1600 | 0.6750 | 0.8795 | |
|
| 0.7034 | 0.99 | 1700 | 0.6748 | 0.8795 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0.dev0 |
|
- Pytorch 2.0.0-rc1 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|