About:
A fine-tuned version of Deepseek-R1-Distilled-Qwen-1.5B that surpasses the performance of OpenAI’s o1-preview with just 1.5B parameters on popular math evaluations.
Special thanks to Agentica for fine-tuning this version of Deepseek-R1-Distilled-Qwen-1.5B. More information about it can be found here:
https://huggingface.co/agentica-org/DeepScaleR-1.5B-Preview. (Base Model)
Other Types/Sizes:
Link | Type | Size | Notes |
---|---|---|---|
[MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-8bit-mlx) | 8-bit | 1.90 GB | Best Quality |
[MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-6bit-mlx) | 6-bit | 1.46 GB | Better Quality |
[MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-4bit-mlx) | 4-bit | 1.01 GB | Good Quality |
I simply converted it to MLX format with a quantization of 6-bits for better performance on Apple Silicon Macs (M1,M2,M3,M4 Chips).
AlejandroOlmedo/DeepScaleR-1.5B-Preview-6bit-mlx
The Model AlejandroOlmedo/DeepScaleR-1.5B-Preview-6bit-mlx was converted to MLX format from agentica-org/DeepScaleR-1.5B-Preview using mlx-lm version 0.20.5.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("AlejandroOlmedo/DeepScaleR-1.5B-Preview-6bit-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for AlejandroOlmedo/DeepScaleR-1.5B-Preview-6bit-mlx
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
Finetuned
agentica-org/DeepScaleR-1.5B-Preview