metadata
license: mit
library_name: transformers
datasets:
- AI-MO/NuminaMath-CoT
- KbsdJames/Omni-MATH
- RUC-AIBOX/STILL-3-Preview-RL-Data
- hendrycks/competition_math
language:
- en
base_model: agentica-org/DeepScaleR-1.5B-Preview
tags:
- mlx
Alejandroolmedo/DeepScaleR-1.5B-Preview-Q4-mlx
The Model Alejandroolmedo/DeepScaleR-1.5B-Preview-Q4-mlx was converted to MLX format from agentica-org/DeepScaleR-1.5B-Preview using mlx-lm version 0.20.5.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("Alejandroolmedo/DeepScaleR-1.5B-Preview-Q4-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)