File size: 21,002 Bytes
7434657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
# -*- coding: utf-8 -*-
import os
import math
import re
import torch
import numpy as np
import random
import gc
from datetime import datetime
from pathlib import Path

import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from torch.optim.lr_scheduler import LambdaLR
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
# QWEN: импорт класса
from diffusers import AutoencoderKLQwenImage

from accelerate import Accelerator
from PIL import Image, UnidentifiedImageError
from tqdm import tqdm
import bitsandbytes as bnb
import wandb
import lpips   # pip install lpips
from collections import deque

# --------------------------- Параметры ---------------------------
ds_path            = "/workspace/png"
project            = "qwen_vae"
batch_size         = 3
base_learning_rate = 5e-5
min_learning_rate  = 9e-7
num_epochs         = 16
sample_interval_share = 10
use_wandb          = True
save_model         = True
use_decay          = True
optimizer_type     = "adam8bit"
dtype              = torch.float32

model_resolution   = 512
high_resolution    = 512 
limit              = 0
save_barrier       = 1.03
warmup_percent     = 0.01
percentile_clipping = 95
beta2              = 0.97
eps                = 1e-6
clip_grad_norm     = 1.0
mixed_precision    = "no"
gradient_accumulation_steps = 5
generated_folder   = "samples"
save_as            = "wen_vae_nightly"
num_workers        = 0
device = None

# --- Режимы обучения ---
# QWEN: учим только декодер
train_decoder_only = True
full_training      = False  # если True — учим весь VAE и добавляем KL (ниже)
kl_ratio           = 0.05

# Доли лоссов
loss_ratios = {
    "lpips": 0.80,
    "edge":  0.05,
    "mse":   0.10,
    "mae":   0.05,
    "kl":    0.00,  # активируем при full_training=True
}
median_coeff_steps = 256

resize_long_side = 1280  # ресайз длинной стороны исходных картинок

# QWEN: конфиг загрузки модели
vae_kind      = "qwen"  # "qwen" или "kl" (обычный)
vae_model_id  = "Qwen/Qwen-Image"
vae_subfolder = "vae"

Path(generated_folder).mkdir(parents=True, exist_ok=True)

accelerator = Accelerator(
    mixed_precision=mixed_precision,
    gradient_accumulation_steps=gradient_accumulation_steps
)
device = accelerator.device

# reproducibility
seed = int(datetime.now().strftime("%Y%m%d"))
torch.manual_seed(seed); np.random.seed(seed); random.seed(seed)
torch.backends.cudnn.benchmark = False

# --------------------------- WandB ---------------------------
if use_wandb and accelerator.is_main_process:
    wandb.init(project=project, config={
        "batch_size": batch_size,
        "base_learning_rate": base_learning_rate,
        "num_epochs": num_epochs,
        "optimizer_type": optimizer_type,
        "model_resolution": model_resolution,
        "high_resolution": high_resolution,
        "gradient_accumulation_steps": gradient_accumulation_steps,
        "train_decoder_only": train_decoder_only,
        "full_training": full_training,
        "kl_ratio": kl_ratio,
        "vae_kind": vae_kind,
        "vae_model_id": vae_model_id,
    })

# --------------------------- VAE ---------------------------
def is_qwen_vae(vae) -> bool:
    return isinstance(vae, AutoencoderKLQwenImage) or ("Qwen" in vae.__class__.__name__)

# загрузка
if vae_kind == "qwen":
    vae = AutoencoderKLQwenImage.from_pretrained(vae_model_id, subfolder=vae_subfolder)
else:
    # старое поведение (пример)
    if model_resolution==high_resolution:
        vae = AutoencoderKL.from_pretrained(project)
    else:
        vae = AsymmetricAutoencoderKL.from_pretrained(project)

vae = vae.to(dtype)

# torch.compile (опционально)
if hasattr(torch, "compile"):
    try:
        vae = torch.compile(vae)
    except Exception as e:
        print(f"[WARN] torch.compile failed: {e}")

# --------------------------- Freeze/Unfreeze ---------------------------
for p in vae.parameters():
    p.requires_grad = False

unfrozen_param_names = []

if full_training and not train_decoder_only:
    # учим всю модель
    for name, p in vae.named_parameters():
        p.requires_grad = True
        unfrozen_param_names.append(name)
    loss_ratios["kl"] = float(kl_ratio)
    trainable_module = vae
else:
    # QWEN: учим только декодер (и post_quant_conv — часть декодерного тракта)
    # универсально: всё, что начинается с "decoder." или "post_quant_conv"
    for name, p in vae.named_parameters():
        if name.startswith("decoder.") or name.startswith("post_quant_conv"):
            p.requires_grad = True
            unfrozen_param_names.append(name)
    trainable_module = vae.decoder if hasattr(vae, "decoder") else vae

print(f"[INFO] Разморожено параметров: {len(unfrozen_param_names)}. Первые 200 имён:")
for nm in unfrozen_param_names[:200]:
    print("  ", nm)

# --------------------------- Датасет ---------------------------
class PngFolderDataset(Dataset):
    def __init__(self, root_dir, min_exts=('.png',), resolution=1024, limit=0):
        self.root_dir = root_dir
        self.resolution = resolution
        self.paths = []
        for root, _, files in os.walk(root_dir):
            for fname in files:
                if fname.lower().endswith(tuple(ext.lower() for ext in min_exts)):
                    self.paths.append(os.path.join(root, fname))
        if limit:
            self.paths = self.paths[:limit]
        valid = []
        for p in self.paths:
            try:
                with Image.open(p) as im:
                    im.verify()
                valid.append(p)
            except (OSError, UnidentifiedImageError):
                continue
        self.paths = valid
        if len(self.paths) == 0:
            raise RuntimeError(f"No valid PNG images found under {root_dir}")
        random.shuffle(self.paths)

    def __len__(self):
        return len(self.paths)

    def __getitem__(self, idx):
        p = self.paths[idx % len(self.paths)]
        with Image.open(p) as img:
            img = img.convert("RGB")
            if not resize_long_side or resize_long_side <= 0:
                return img
            w, h = img.size
            long = max(w, h)
            if long <= resize_long_side:
                return img
            scale = resize_long_side / float(long)
            new_w = int(round(w * scale))
            new_h = int(round(h * scale))
            return img.resize((new_w, new_h), Image.LANCZOS)

def random_crop(img, sz):
    w, h = img.size
    if w < sz or h < sz:
        img = img.resize((max(sz, w), max(sz, h)), Image.LANCZOS)
    x = random.randint(0, max(1, img.width - sz))
    y = random.randint(0, max(1, img.height - sz))
    return img.crop((x, y, x + sz, y + sz))

tfm = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

dataset = PngFolderDataset(ds_path, min_exts=('.png',), resolution=high_resolution, limit=limit)
if len(dataset) < batch_size:
    raise RuntimeError(f"Not enough valid images ({len(dataset)}) to form a batch of size {batch_size}")

def collate_fn(batch):
    imgs = []
    for img in batch:
        img = random_crop(img, high_resolution)
        imgs.append(tfm(img))
    return torch.stack(imgs)

dataloader = DataLoader(
    dataset,
    batch_size=batch_size,
    shuffle=True,
    collate_fn=collate_fn,
    num_workers=num_workers,
    pin_memory=True,
    drop_last=True
)

# --------------------------- Оптимизатор ---------------------------
def get_param_groups(module, weight_decay=0.001):
    no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight", "ln_1.weight", "ln_f.weight"]
    decay_params, no_decay_params = [], []
    for n, p in vae.named_parameters():  # глобально по vae, с фильтром requires_grad
        if not p.requires_grad:
            continue
        if any(nd in n for nd in no_decay):
            no_decay_params.append(p)
        else:
            decay_params.append(p)
    return [
        {"params": decay_params, "weight_decay": weight_decay},
        {"params": no_decay_params, "weight_decay": 0.0},
    ]

def create_optimizer(name, param_groups):
    if name == "adam8bit":
        return bnb.optim.AdamW8bit(param_groups, lr=base_learning_rate, betas=(0.9, beta2), eps=eps)
    raise ValueError(name)

param_groups = get_param_groups(trainable_module, weight_decay=0.001)
optimizer = create_optimizer(optimizer_type, param_groups)

# --------------------------- LR schedule ---------------------------
batches_per_epoch = len(dataloader)
steps_per_epoch = int(math.ceil(batches_per_epoch / float(gradient_accumulation_steps)))
total_steps = steps_per_epoch * num_epochs

def lr_lambda(step):
    if not use_decay:
        return 1.0
    x = float(step) / float(max(1, total_steps))
    warmup = float(warmup_percent)
    min_ratio = float(min_learning_rate) / float(base_learning_rate)
    if x < warmup:
        return min_ratio + (1.0 - min_ratio) * (x / warmup)
    decay_ratio = (x - warmup) / (1.0 - warmup)
    return min_ratio + 0.5 * (1.0 - min_ratio) * (1.0 + math.cos(math.pi * decay_ratio))

scheduler = LambdaLR(optimizer, lr_lambda)

# Подготовка
dataloader, vae, optimizer, scheduler = accelerator.prepare(dataloader, vae, optimizer, scheduler)
trainable_params = [p for p in vae.parameters() if p.requires_grad]

# --------------------------- LPIPS и вспомогательные ---------------------------
_lpips_net = None
def _get_lpips():
    global _lpips_net
    if _lpips_net is None:
        _lpips_net = lpips.LPIPS(net='vgg', verbose=False).eval().to(accelerator.device).eval()
    return _lpips_net

_sobel_kx = torch.tensor([[[[-1,0,1],[-2,0,2],[-1,0,1]]]], dtype=torch.float32)
_sobel_ky = torch.tensor([[[[-1,-2,-1],[0,0,0],[1,2,1]]]], dtype=torch.float32)
def sobel_edges(x: torch.Tensor) -> torch.Tensor:
    C = x.shape[1]
    kx = _sobel_kx.to(x.device, x.dtype).repeat(C, 1, 1, 1)
    ky = _sobel_ky.to(x.device, x.dtype).repeat(C, 1, 1, 1)
    gx = F.conv2d(x, kx, padding=1, groups=C)
    gy = F.conv2d(x, ky, padding=1, groups=C)
    return torch.sqrt(gx * gx + gy * gy + 1e-12)

class MedianLossNormalizer:
    def __init__(self, desired_ratios: dict, window_steps: int):
        s = sum(desired_ratios.values())
        self.ratios = {k: (v / s) if s > 0 else 0.0 for k, v in desired_ratios.items()}
        self.buffers = {k: deque(maxlen=window_steps) for k in self.ratios.keys()}
        self.window = window_steps

    def update_and_total(self, abs_losses: dict):
        for k, v in abs_losses.items():
            if k in self.buffers:
                self.buffers[k].append(float(v.detach().abs().cpu()))
        meds = {k: (np.median(self.buffers[k]) if len(self.buffers[k]) > 0 else 1.0) for k in self.buffers}
        coeffs = {k: (self.ratios[k] / max(meds[k], 1e-12)) for k in self.ratios}
        total = sum(coeffs[k] * abs_losses[k] for k in abs_losses if k in coeffs)
        return total, coeffs, meds

if full_training and not train_decoder_only:
    loss_ratios["kl"] = float(kl_ratio)
normalizer = MedianLossNormalizer(loss_ratios, median_coeff_steps)

# --------------------------- Сэмплы ---------------------------
@torch.no_grad()
def get_fixed_samples(n=3):
    idx = random.sample(range(len(dataset)), min(n, len(dataset)))
    pil_imgs = [dataset[i] for i in idx]
    tensors = []
    for img in pil_imgs:
        img = random_crop(img, high_resolution)
        tensors.append(tfm(img))
    return torch.stack(tensors).to(accelerator.device, dtype)

fixed_samples = get_fixed_samples()

@torch.no_grad()
def _to_pil_uint8(img_tensor: torch.Tensor) -> Image.Image:
    arr = ((img_tensor.float().clamp(-1, 1) + 1.0) * 127.5).clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0)
    return Image.fromarray(arr)

@torch.no_grad()
def generate_and_save_samples(step=None):
    try:
        temp_vae = accelerator.unwrap_model(vae).eval()
        lpips_net = _get_lpips()
        with torch.no_grad():
            orig_high = fixed_samples
            orig_low = F.interpolate(orig_high, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
            model_dtype = next(temp_vae.parameters()).dtype
            orig_low = orig_low.to(dtype=model_dtype)

            # QWEN: добавляем T=1 на encode/decode и снимаем при сравнении
            if is_qwen_vae(temp_vae):
                x_in = orig_low.unsqueeze(2)           # [B,3,1,H,W]
                enc = temp_vae.encode(x_in)
                latents_mean = enc.latent_dist.mean
                dec = temp_vae.decode(latents_mean).sample  # [B,3,1,H,W]
                rec = dec.squeeze(2)                   # [B,3,H,W]
            else:
                enc = temp_vae.encode(orig_low)
                latents_mean = enc.latent_dist.mean
                rec = temp_vae.decode(latents_mean).sample

        if rec.shape[-2:] != orig_high.shape[-2:]:
            rec = F.interpolate(rec, size=orig_high.shape[-2:], mode="bilinear", align_corners=False)

        first_real = _to_pil_uint8(orig_high[0])
        first_dec  = _to_pil_uint8(rec[0])
        first_real.save(f"{generated_folder}/sample_real.jpg", quality=95)
        first_dec.save(f"{generated_folder}/sample_decoded.jpg", quality=95)

        for i in range(rec.shape[0]):
            _to_pil_uint8(rec[i]).save(f"{generated_folder}/sample_{i}.jpg", quality=95)

        lpips_scores = []
        for i in range(rec.shape[0]):
            orig_full = orig_high[i:i+1].to(torch.float32)
            rec_full  = rec[i:i+1].to(torch.float32)
            if rec_full.shape[-2:] != orig_full.shape[-2:]:
                rec_full = F.interpolate(rec_full, size=orig_full.shape[-2:], mode="bilinear", align_corners=False)
            lpips_val = lpips_net(orig_full, rec_full).item()
            lpips_scores.append(lpips_val)
        avg_lpips = float(np.mean(lpips_scores))

        if use_wandb and accelerator.is_main_process:
            wandb.log({"lpips_mean": avg_lpips}, step=step)
    finally:
        gc.collect()
        torch.cuda.empty_cache()

if accelerator.is_main_process and save_model:
    print("Генерация сэмплов до старта обучения...")
    generate_and_save_samples(0)

accelerator.wait_for_everyone()

# --------------------------- Тренировка ---------------------------
progress = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
global_step = 0
min_loss = float("inf")
sample_interval = max(1, total_steps // max(1, sample_interval_share * num_epochs))

for epoch in range(num_epochs):
    vae.train()
    batch_losses, batch_grads = [], []
    track_losses = {k: [] for k in loss_ratios.keys()}

    for imgs in dataloader:
        with accelerator.accumulate(vae):
            imgs = imgs.to(accelerator.device)

            if high_resolution != model_resolution:
                imgs_low = F.interpolate(imgs, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
            else:
                imgs_low = imgs

            model_dtype = next(vae.parameters()).dtype
            imgs_low_model = imgs_low.to(dtype=model_dtype) if imgs_low.dtype != model_dtype else imgs_low

            # QWEN: encode/decode с T=1
            if is_qwen_vae(vae):
                x_in = imgs_low_model.unsqueeze(2)             # [B,3,1,H,W]
                enc = vae.encode(x_in)
                latents = enc.latent_dist.mean if train_decoder_only else enc.latent_dist.sample()
                dec = vae.decode(latents).sample               # [B,3,1,H,W]
                rec = dec.squeeze(2)                           # [B,3,H,W]
            else:
                enc = vae.encode(imgs_low_model)
                latents = enc.latent_dist.mean if train_decoder_only else enc.latent_dist.sample()
                rec = vae.decode(latents).sample

            if rec.shape[-2:] != imgs.shape[-2:]:
                rec = F.interpolate(rec, size=imgs.shape[-2:], mode="bilinear", align_corners=False)

            rec_f32 = rec.to(torch.float32)
            imgs_f32 = imgs.to(torch.float32)

            abs_losses = {
                "mae":   F.l1_loss(rec_f32, imgs_f32),
                "mse":   F.mse_loss(rec_f32, imgs_f32),
                "lpips": _get_lpips()(rec_f32, imgs_f32).mean(),
                "edge":  F.l1_loss(sobel_edges(rec_f32), sobel_edges(imgs_f32)),
            }

            if full_training and not train_decoder_only:
                mean   = enc.latent_dist.mean
                logvar = enc.latent_dist.logvar
                kl = -0.5 * torch.mean(1 + logvar - mean.pow(2) - logvar.exp())
                abs_losses["kl"] = kl
            else:
                abs_losses["kl"] = torch.tensor(0.0, device=accelerator.device, dtype=torch.float32)

            total_loss, coeffs, meds = normalizer.update_and_total(abs_losses)

            if torch.isnan(total_loss) or torch.isinf(total_loss):
                raise RuntimeError("NaN/Inf loss")

            accelerator.backward(total_loss)

            grad_norm = torch.tensor(0.0, device=accelerator.device)
            if accelerator.sync_gradients:
                grad_norm = accelerator.clip_grad_norm_(trainable_params, clip_grad_norm)
                optimizer.step()
                scheduler.step()
                optimizer.zero_grad(set_to_none=True)
                global_step += 1
                progress.update(1)

            if accelerator.is_main_process:
                try:
                    current_lr = optimizer.param_groups[0]["lr"]
                except Exception:
                    current_lr = scheduler.get_last_lr()[0]

                batch_losses.append(total_loss.detach().item())
                batch_grads.append(float(grad_norm.detach().cpu().item()) if isinstance(grad_norm, torch.Tensor) else float(grad_norm))
                for k, v in abs_losses.items():
                    track_losses[k].append(float(v.detach().item()))

                if use_wandb and accelerator.sync_gradients:
                    log_dict = {
                        "total_loss": float(total_loss.detach().item()),
                        "learning_rate": current_lr,
                        "epoch": epoch,
                        "grad_norm": batch_grads[-1],
                        "mode/train_decoder_only": int(train_decoder_only),
                        "mode/full_training": int(full_training),
                    }
                    for k, v in abs_losses.items():
                        log_dict[f"loss_{k}"] = float(v.detach().item())
                    for k in coeffs:
                        log_dict[f"coeff_{k}"] = float(coeffs[k])
                        log_dict[f"median_{k}"] = float(meds[k])
                    wandb.log(log_dict, step=global_step)

            if global_step > 0 and global_step % sample_interval == 0:
                if accelerator.is_main_process:
                    generate_and_save_samples(global_step)
                accelerator.wait_for_everyone()

                n_micro = sample_interval * gradient_accumulation_steps
                avg_loss = float(np.mean(batch_losses[-n_micro:])) if len(batch_losses) >= n_micro else float(np.mean(batch_losses)) if batch_losses else float("nan")
                avg_grad = float(np.mean(batch_grads[-n_micro:])) if len(batch_grads) >= 1 else float(np.mean(batch_grads)) if batch_grads else 0.0

                if accelerator.is_main_process:
                    print(f"Epoch {epoch} step {global_step} loss: {avg_loss:.6f}, grad_norm: {avg_grad:.6f}, lr: {current_lr:.9f}")
                    if save_model and avg_loss < min_loss * save_barrier:
                        min_loss = avg_loss
                        accelerator.unwrap_model(vae).save_pretrained(save_as)
                    if use_wandb:
                        wandb.log({"interm_loss": avg_loss, "interm_grad": avg_grad}, step=global_step)

    if accelerator.is_main_process:
        epoch_avg = float(np.mean(batch_losses)) if batch_losses else float("nan")
        print(f"Epoch {epoch} done, avg loss {epoch_avg:.6f}")
        if use_wandb:
            wandb.log({"epoch_loss": epoch_avg, "epoch": epoch + 1}, step=global_step)

# --------------------------- Финальное сохранение ---------------------------
if accelerator.is_main_process:
    print("Training finished – saving final model")
    if save_model:
        accelerator.unwrap_model(vae).save_pretrained(save_as)

accelerator.free_memory()
if torch.distributed.is_initialized():
    torch.distributed.destroy_process_group()
print("Готово!")