File size: 21,002 Bytes
7434657 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
# -*- coding: utf-8 -*-
import os
import math
import re
import torch
import numpy as np
import random
import gc
from datetime import datetime
from pathlib import Path
import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from torch.optim.lr_scheduler import LambdaLR
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
# QWEN: импорт класса
from diffusers import AutoencoderKLQwenImage
from accelerate import Accelerator
from PIL import Image, UnidentifiedImageError
from tqdm import tqdm
import bitsandbytes as bnb
import wandb
import lpips # pip install lpips
from collections import deque
# --------------------------- Параметры ---------------------------
ds_path = "/workspace/png"
project = "qwen_vae"
batch_size = 3
base_learning_rate = 5e-5
min_learning_rate = 9e-7
num_epochs = 16
sample_interval_share = 10
use_wandb = True
save_model = True
use_decay = True
optimizer_type = "adam8bit"
dtype = torch.float32
model_resolution = 512
high_resolution = 512
limit = 0
save_barrier = 1.03
warmup_percent = 0.01
percentile_clipping = 95
beta2 = 0.97
eps = 1e-6
clip_grad_norm = 1.0
mixed_precision = "no"
gradient_accumulation_steps = 5
generated_folder = "samples"
save_as = "wen_vae_nightly"
num_workers = 0
device = None
# --- Режимы обучения ---
# QWEN: учим только декодер
train_decoder_only = True
full_training = False # если True — учим весь VAE и добавляем KL (ниже)
kl_ratio = 0.05
# Доли лоссов
loss_ratios = {
"lpips": 0.80,
"edge": 0.05,
"mse": 0.10,
"mae": 0.05,
"kl": 0.00, # активируем при full_training=True
}
median_coeff_steps = 256
resize_long_side = 1280 # ресайз длинной стороны исходных картинок
# QWEN: конфиг загрузки модели
vae_kind = "qwen" # "qwen" или "kl" (обычный)
vae_model_id = "Qwen/Qwen-Image"
vae_subfolder = "vae"
Path(generated_folder).mkdir(parents=True, exist_ok=True)
accelerator = Accelerator(
mixed_precision=mixed_precision,
gradient_accumulation_steps=gradient_accumulation_steps
)
device = accelerator.device
# reproducibility
seed = int(datetime.now().strftime("%Y%m%d"))
torch.manual_seed(seed); np.random.seed(seed); random.seed(seed)
torch.backends.cudnn.benchmark = False
# --------------------------- WandB ---------------------------
if use_wandb and accelerator.is_main_process:
wandb.init(project=project, config={
"batch_size": batch_size,
"base_learning_rate": base_learning_rate,
"num_epochs": num_epochs,
"optimizer_type": optimizer_type,
"model_resolution": model_resolution,
"high_resolution": high_resolution,
"gradient_accumulation_steps": gradient_accumulation_steps,
"train_decoder_only": train_decoder_only,
"full_training": full_training,
"kl_ratio": kl_ratio,
"vae_kind": vae_kind,
"vae_model_id": vae_model_id,
})
# --------------------------- VAE ---------------------------
def is_qwen_vae(vae) -> bool:
return isinstance(vae, AutoencoderKLQwenImage) or ("Qwen" in vae.__class__.__name__)
# загрузка
if vae_kind == "qwen":
vae = AutoencoderKLQwenImage.from_pretrained(vae_model_id, subfolder=vae_subfolder)
else:
# старое поведение (пример)
if model_resolution==high_resolution:
vae = AutoencoderKL.from_pretrained(project)
else:
vae = AsymmetricAutoencoderKL.from_pretrained(project)
vae = vae.to(dtype)
# torch.compile (опционально)
if hasattr(torch, "compile"):
try:
vae = torch.compile(vae)
except Exception as e:
print(f"[WARN] torch.compile failed: {e}")
# --------------------------- Freeze/Unfreeze ---------------------------
for p in vae.parameters():
p.requires_grad = False
unfrozen_param_names = []
if full_training and not train_decoder_only:
# учим всю модель
for name, p in vae.named_parameters():
p.requires_grad = True
unfrozen_param_names.append(name)
loss_ratios["kl"] = float(kl_ratio)
trainable_module = vae
else:
# QWEN: учим только декодер (и post_quant_conv — часть декодерного тракта)
# универсально: всё, что начинается с "decoder." или "post_quant_conv"
for name, p in vae.named_parameters():
if name.startswith("decoder.") or name.startswith("post_quant_conv"):
p.requires_grad = True
unfrozen_param_names.append(name)
trainable_module = vae.decoder if hasattr(vae, "decoder") else vae
print(f"[INFO] Разморожено параметров: {len(unfrozen_param_names)}. Первые 200 имён:")
for nm in unfrozen_param_names[:200]:
print(" ", nm)
# --------------------------- Датасет ---------------------------
class PngFolderDataset(Dataset):
def __init__(self, root_dir, min_exts=('.png',), resolution=1024, limit=0):
self.root_dir = root_dir
self.resolution = resolution
self.paths = []
for root, _, files in os.walk(root_dir):
for fname in files:
if fname.lower().endswith(tuple(ext.lower() for ext in min_exts)):
self.paths.append(os.path.join(root, fname))
if limit:
self.paths = self.paths[:limit]
valid = []
for p in self.paths:
try:
with Image.open(p) as im:
im.verify()
valid.append(p)
except (OSError, UnidentifiedImageError):
continue
self.paths = valid
if len(self.paths) == 0:
raise RuntimeError(f"No valid PNG images found under {root_dir}")
random.shuffle(self.paths)
def __len__(self):
return len(self.paths)
def __getitem__(self, idx):
p = self.paths[idx % len(self.paths)]
with Image.open(p) as img:
img = img.convert("RGB")
if not resize_long_side or resize_long_side <= 0:
return img
w, h = img.size
long = max(w, h)
if long <= resize_long_side:
return img
scale = resize_long_side / float(long)
new_w = int(round(w * scale))
new_h = int(round(h * scale))
return img.resize((new_w, new_h), Image.LANCZOS)
def random_crop(img, sz):
w, h = img.size
if w < sz or h < sz:
img = img.resize((max(sz, w), max(sz, h)), Image.LANCZOS)
x = random.randint(0, max(1, img.width - sz))
y = random.randint(0, max(1, img.height - sz))
return img.crop((x, y, x + sz, y + sz))
tfm = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
dataset = PngFolderDataset(ds_path, min_exts=('.png',), resolution=high_resolution, limit=limit)
if len(dataset) < batch_size:
raise RuntimeError(f"Not enough valid images ({len(dataset)}) to form a batch of size {batch_size}")
def collate_fn(batch):
imgs = []
for img in batch:
img = random_crop(img, high_resolution)
imgs.append(tfm(img))
return torch.stack(imgs)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
drop_last=True
)
# --------------------------- Оптимизатор ---------------------------
def get_param_groups(module, weight_decay=0.001):
no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight", "ln_1.weight", "ln_f.weight"]
decay_params, no_decay_params = [], []
for n, p in vae.named_parameters(): # глобально по vae, с фильтром requires_grad
if not p.requires_grad:
continue
if any(nd in n for nd in no_decay):
no_decay_params.append(p)
else:
decay_params.append(p)
return [
{"params": decay_params, "weight_decay": weight_decay},
{"params": no_decay_params, "weight_decay": 0.0},
]
def create_optimizer(name, param_groups):
if name == "adam8bit":
return bnb.optim.AdamW8bit(param_groups, lr=base_learning_rate, betas=(0.9, beta2), eps=eps)
raise ValueError(name)
param_groups = get_param_groups(trainable_module, weight_decay=0.001)
optimizer = create_optimizer(optimizer_type, param_groups)
# --------------------------- LR schedule ---------------------------
batches_per_epoch = len(dataloader)
steps_per_epoch = int(math.ceil(batches_per_epoch / float(gradient_accumulation_steps)))
total_steps = steps_per_epoch * num_epochs
def lr_lambda(step):
if not use_decay:
return 1.0
x = float(step) / float(max(1, total_steps))
warmup = float(warmup_percent)
min_ratio = float(min_learning_rate) / float(base_learning_rate)
if x < warmup:
return min_ratio + (1.0 - min_ratio) * (x / warmup)
decay_ratio = (x - warmup) / (1.0 - warmup)
return min_ratio + 0.5 * (1.0 - min_ratio) * (1.0 + math.cos(math.pi * decay_ratio))
scheduler = LambdaLR(optimizer, lr_lambda)
# Подготовка
dataloader, vae, optimizer, scheduler = accelerator.prepare(dataloader, vae, optimizer, scheduler)
trainable_params = [p for p in vae.parameters() if p.requires_grad]
# --------------------------- LPIPS и вспомогательные ---------------------------
_lpips_net = None
def _get_lpips():
global _lpips_net
if _lpips_net is None:
_lpips_net = lpips.LPIPS(net='vgg', verbose=False).eval().to(accelerator.device).eval()
return _lpips_net
_sobel_kx = torch.tensor([[[[-1,0,1],[-2,0,2],[-1,0,1]]]], dtype=torch.float32)
_sobel_ky = torch.tensor([[[[-1,-2,-1],[0,0,0],[1,2,1]]]], dtype=torch.float32)
def sobel_edges(x: torch.Tensor) -> torch.Tensor:
C = x.shape[1]
kx = _sobel_kx.to(x.device, x.dtype).repeat(C, 1, 1, 1)
ky = _sobel_ky.to(x.device, x.dtype).repeat(C, 1, 1, 1)
gx = F.conv2d(x, kx, padding=1, groups=C)
gy = F.conv2d(x, ky, padding=1, groups=C)
return torch.sqrt(gx * gx + gy * gy + 1e-12)
class MedianLossNormalizer:
def __init__(self, desired_ratios: dict, window_steps: int):
s = sum(desired_ratios.values())
self.ratios = {k: (v / s) if s > 0 else 0.0 for k, v in desired_ratios.items()}
self.buffers = {k: deque(maxlen=window_steps) for k in self.ratios.keys()}
self.window = window_steps
def update_and_total(self, abs_losses: dict):
for k, v in abs_losses.items():
if k in self.buffers:
self.buffers[k].append(float(v.detach().abs().cpu()))
meds = {k: (np.median(self.buffers[k]) if len(self.buffers[k]) > 0 else 1.0) for k in self.buffers}
coeffs = {k: (self.ratios[k] / max(meds[k], 1e-12)) for k in self.ratios}
total = sum(coeffs[k] * abs_losses[k] for k in abs_losses if k in coeffs)
return total, coeffs, meds
if full_training and not train_decoder_only:
loss_ratios["kl"] = float(kl_ratio)
normalizer = MedianLossNormalizer(loss_ratios, median_coeff_steps)
# --------------------------- Сэмплы ---------------------------
@torch.no_grad()
def get_fixed_samples(n=3):
idx = random.sample(range(len(dataset)), min(n, len(dataset)))
pil_imgs = [dataset[i] for i in idx]
tensors = []
for img in pil_imgs:
img = random_crop(img, high_resolution)
tensors.append(tfm(img))
return torch.stack(tensors).to(accelerator.device, dtype)
fixed_samples = get_fixed_samples()
@torch.no_grad()
def _to_pil_uint8(img_tensor: torch.Tensor) -> Image.Image:
arr = ((img_tensor.float().clamp(-1, 1) + 1.0) * 127.5).clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0)
return Image.fromarray(arr)
@torch.no_grad()
def generate_and_save_samples(step=None):
try:
temp_vae = accelerator.unwrap_model(vae).eval()
lpips_net = _get_lpips()
with torch.no_grad():
orig_high = fixed_samples
orig_low = F.interpolate(orig_high, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
model_dtype = next(temp_vae.parameters()).dtype
orig_low = orig_low.to(dtype=model_dtype)
# QWEN: добавляем T=1 на encode/decode и снимаем при сравнении
if is_qwen_vae(temp_vae):
x_in = orig_low.unsqueeze(2) # [B,3,1,H,W]
enc = temp_vae.encode(x_in)
latents_mean = enc.latent_dist.mean
dec = temp_vae.decode(latents_mean).sample # [B,3,1,H,W]
rec = dec.squeeze(2) # [B,3,H,W]
else:
enc = temp_vae.encode(orig_low)
latents_mean = enc.latent_dist.mean
rec = temp_vae.decode(latents_mean).sample
if rec.shape[-2:] != orig_high.shape[-2:]:
rec = F.interpolate(rec, size=orig_high.shape[-2:], mode="bilinear", align_corners=False)
first_real = _to_pil_uint8(orig_high[0])
first_dec = _to_pil_uint8(rec[0])
first_real.save(f"{generated_folder}/sample_real.jpg", quality=95)
first_dec.save(f"{generated_folder}/sample_decoded.jpg", quality=95)
for i in range(rec.shape[0]):
_to_pil_uint8(rec[i]).save(f"{generated_folder}/sample_{i}.jpg", quality=95)
lpips_scores = []
for i in range(rec.shape[0]):
orig_full = orig_high[i:i+1].to(torch.float32)
rec_full = rec[i:i+1].to(torch.float32)
if rec_full.shape[-2:] != orig_full.shape[-2:]:
rec_full = F.interpolate(rec_full, size=orig_full.shape[-2:], mode="bilinear", align_corners=False)
lpips_val = lpips_net(orig_full, rec_full).item()
lpips_scores.append(lpips_val)
avg_lpips = float(np.mean(lpips_scores))
if use_wandb and accelerator.is_main_process:
wandb.log({"lpips_mean": avg_lpips}, step=step)
finally:
gc.collect()
torch.cuda.empty_cache()
if accelerator.is_main_process and save_model:
print("Генерация сэмплов до старта обучения...")
generate_and_save_samples(0)
accelerator.wait_for_everyone()
# --------------------------- Тренировка ---------------------------
progress = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
global_step = 0
min_loss = float("inf")
sample_interval = max(1, total_steps // max(1, sample_interval_share * num_epochs))
for epoch in range(num_epochs):
vae.train()
batch_losses, batch_grads = [], []
track_losses = {k: [] for k in loss_ratios.keys()}
for imgs in dataloader:
with accelerator.accumulate(vae):
imgs = imgs.to(accelerator.device)
if high_resolution != model_resolution:
imgs_low = F.interpolate(imgs, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
else:
imgs_low = imgs
model_dtype = next(vae.parameters()).dtype
imgs_low_model = imgs_low.to(dtype=model_dtype) if imgs_low.dtype != model_dtype else imgs_low
# QWEN: encode/decode с T=1
if is_qwen_vae(vae):
x_in = imgs_low_model.unsqueeze(2) # [B,3,1,H,W]
enc = vae.encode(x_in)
latents = enc.latent_dist.mean if train_decoder_only else enc.latent_dist.sample()
dec = vae.decode(latents).sample # [B,3,1,H,W]
rec = dec.squeeze(2) # [B,3,H,W]
else:
enc = vae.encode(imgs_low_model)
latents = enc.latent_dist.mean if train_decoder_only else enc.latent_dist.sample()
rec = vae.decode(latents).sample
if rec.shape[-2:] != imgs.shape[-2:]:
rec = F.interpolate(rec, size=imgs.shape[-2:], mode="bilinear", align_corners=False)
rec_f32 = rec.to(torch.float32)
imgs_f32 = imgs.to(torch.float32)
abs_losses = {
"mae": F.l1_loss(rec_f32, imgs_f32),
"mse": F.mse_loss(rec_f32, imgs_f32),
"lpips": _get_lpips()(rec_f32, imgs_f32).mean(),
"edge": F.l1_loss(sobel_edges(rec_f32), sobel_edges(imgs_f32)),
}
if full_training and not train_decoder_only:
mean = enc.latent_dist.mean
logvar = enc.latent_dist.logvar
kl = -0.5 * torch.mean(1 + logvar - mean.pow(2) - logvar.exp())
abs_losses["kl"] = kl
else:
abs_losses["kl"] = torch.tensor(0.0, device=accelerator.device, dtype=torch.float32)
total_loss, coeffs, meds = normalizer.update_and_total(abs_losses)
if torch.isnan(total_loss) or torch.isinf(total_loss):
raise RuntimeError("NaN/Inf loss")
accelerator.backward(total_loss)
grad_norm = torch.tensor(0.0, device=accelerator.device)
if accelerator.sync_gradients:
grad_norm = accelerator.clip_grad_norm_(trainable_params, clip_grad_norm)
optimizer.step()
scheduler.step()
optimizer.zero_grad(set_to_none=True)
global_step += 1
progress.update(1)
if accelerator.is_main_process:
try:
current_lr = optimizer.param_groups[0]["lr"]
except Exception:
current_lr = scheduler.get_last_lr()[0]
batch_losses.append(total_loss.detach().item())
batch_grads.append(float(grad_norm.detach().cpu().item()) if isinstance(grad_norm, torch.Tensor) else float(grad_norm))
for k, v in abs_losses.items():
track_losses[k].append(float(v.detach().item()))
if use_wandb and accelerator.sync_gradients:
log_dict = {
"total_loss": float(total_loss.detach().item()),
"learning_rate": current_lr,
"epoch": epoch,
"grad_norm": batch_grads[-1],
"mode/train_decoder_only": int(train_decoder_only),
"mode/full_training": int(full_training),
}
for k, v in abs_losses.items():
log_dict[f"loss_{k}"] = float(v.detach().item())
for k in coeffs:
log_dict[f"coeff_{k}"] = float(coeffs[k])
log_dict[f"median_{k}"] = float(meds[k])
wandb.log(log_dict, step=global_step)
if global_step > 0 and global_step % sample_interval == 0:
if accelerator.is_main_process:
generate_and_save_samples(global_step)
accelerator.wait_for_everyone()
n_micro = sample_interval * gradient_accumulation_steps
avg_loss = float(np.mean(batch_losses[-n_micro:])) if len(batch_losses) >= n_micro else float(np.mean(batch_losses)) if batch_losses else float("nan")
avg_grad = float(np.mean(batch_grads[-n_micro:])) if len(batch_grads) >= 1 else float(np.mean(batch_grads)) if batch_grads else 0.0
if accelerator.is_main_process:
print(f"Epoch {epoch} step {global_step} loss: {avg_loss:.6f}, grad_norm: {avg_grad:.6f}, lr: {current_lr:.9f}")
if save_model and avg_loss < min_loss * save_barrier:
min_loss = avg_loss
accelerator.unwrap_model(vae).save_pretrained(save_as)
if use_wandb:
wandb.log({"interm_loss": avg_loss, "interm_grad": avg_grad}, step=global_step)
if accelerator.is_main_process:
epoch_avg = float(np.mean(batch_losses)) if batch_losses else float("nan")
print(f"Epoch {epoch} done, avg loss {epoch_avg:.6f}")
if use_wandb:
wandb.log({"epoch_loss": epoch_avg, "epoch": epoch + 1}, step=global_step)
# --------------------------- Финальное сохранение ---------------------------
if accelerator.is_main_process:
print("Training finished – saving final model")
if save_model:
accelerator.unwrap_model(vae).save_pretrained(save_as)
accelerator.free_memory()
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group()
print("Готово!") |