qwen
Browse files- eval_alchemist.py +6 -5
- eval_alchemist2.py +514 -0
- samples/sample_0.jpg +3 -0
- samples/sample_1.jpg +3 -0
- samples/sample_2.jpg +3 -0
- samples/sample_decoded.jpg +3 -0
- samples/sample_real.jpg +3 -0
- simple_vae/diffusion_pytorch_model.safetensors +1 -1
- simple_vae_nightly/diffusion_pytorch_model.safetensors +1 -1
- train_sdxl_vae_full.py +3 -3
- train_sdxl_vae_qwen.py +526 -0
- vaetest/001_all.png +3 -0
- vaetest/001_decoded_FLUX.1_schnell_vae.png +3 -0
- vaetest/001_decoded_simple_vae.png +3 -0
- vaetest/001_decoded_simple_vae2.png +3 -0
- vaetest/001_decoded_simple_vae_nightly.png +3 -0
- vaetest/001_orig.png +3 -0
- vaetest/002_all.png +3 -0
- vaetest/002_decoded_FLUX.1_schnell_vae.png +3 -0
- vaetest/002_decoded_simple_vae.png +3 -0
- vaetest/002_decoded_simple_vae2.png +3 -0
- vaetest/002_decoded_simple_vae_nightly.png +3 -0
- vaetest/002_orig.png +3 -0
eval_alchemist.py
CHANGED
@@ -15,8 +15,8 @@ DTYPE = torch.float16
|
|
15 |
IMAGE_FOLDER = "/workspace/alchemist" #wget https://huggingface.co/datasets/AiArtLab/alchemist/resolve/main/alchemist.zip
|
16 |
MIN_SIZE = 1280
|
17 |
CROP_SIZE = 512
|
18 |
-
BATCH_SIZE =
|
19 |
-
MAX_IMAGES =
|
20 |
NUM_WORKERS = 4
|
21 |
NUM_SAMPLES_TO_SAVE = 2 # Сколько примеров сохранить (0 - не сохранять)
|
22 |
SAMPLES_FOLDER = "vaetest"
|
@@ -32,9 +32,10 @@ VAE_LIST = [
|
|
32 |
# ("Lightricks/LTX-Video", AutoencoderKLLTXVideo, "Lightricks/LTX-Video", "vae"),
|
33 |
# ("Wan2.2-TI2V-5B-Diffusers", AutoencoderKLWan, "Wan-AI/Wan2.2-TI2V-5B-Diffusers", "vae"),
|
34 |
# ("Wan2.2-T2V-A14B-Diffusers", AutoencoderKLWan, "Wan-AI/Wan2.2-T2V-A14B-Diffusers", "vae"),
|
35 |
-
("AiArtLab/sdxs", AutoencoderKL, "AiArtLab/sdxs", "vae"),
|
36 |
-
|
37 |
-
|
|
|
38 |
("simple_vae_nightly", AutoencoderKL, "/workspace/sdxl_vae/simple_vae_nightly", None),
|
39 |
|
40 |
]
|
|
|
15 |
IMAGE_FOLDER = "/workspace/alchemist" #wget https://huggingface.co/datasets/AiArtLab/alchemist/resolve/main/alchemist.zip
|
16 |
MIN_SIZE = 1280
|
17 |
CROP_SIZE = 512
|
18 |
+
BATCH_SIZE = 10
|
19 |
+
MAX_IMAGES = 0
|
20 |
NUM_WORKERS = 4
|
21 |
NUM_SAMPLES_TO_SAVE = 2 # Сколько примеров сохранить (0 - не сохранять)
|
22 |
SAMPLES_FOLDER = "vaetest"
|
|
|
32 |
# ("Lightricks/LTX-Video", AutoencoderKLLTXVideo, "Lightricks/LTX-Video", "vae"),
|
33 |
# ("Wan2.2-TI2V-5B-Diffusers", AutoencoderKLWan, "Wan-AI/Wan2.2-TI2V-5B-Diffusers", "vae"),
|
34 |
# ("Wan2.2-T2V-A14B-Diffusers", AutoencoderKLWan, "Wan-AI/Wan2.2-T2V-A14B-Diffusers", "vae"),
|
35 |
+
# ("AiArtLab/sdxs", AutoencoderKL, "AiArtLab/sdxs", "vae"),
|
36 |
+
("FLUX.1-schnell-vae", AutoencoderKL, "black-forest-labs/FLUX.1-schnell", "vae"),
|
37 |
+
("simple_vae", AutoencoderKL, "AiArtLab/simplevae", "vae"),
|
38 |
+
("simple_vae2", AutoencoderKL, "AiArtLab/simplevae", None),
|
39 |
("simple_vae_nightly", AutoencoderKL, "/workspace/sdxl_vae/simple_vae_nightly", None),
|
40 |
|
41 |
]
|
eval_alchemist2.py
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from typing import Dict, List, Tuple, Optional, Any
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torch.utils.data import Dataset, DataLoader
|
13 |
+
from torchvision.transforms import Compose, Resize, ToTensor, CenterCrop
|
14 |
+
from torchvision.utils import save_image
|
15 |
+
import lpips
|
16 |
+
|
17 |
+
from diffusers import (
|
18 |
+
AutoencoderKL,
|
19 |
+
AutoencoderKLWan,
|
20 |
+
AutoencoderKLLTXVideo,
|
21 |
+
AutoencoderKLQwenImage
|
22 |
+
)
|
23 |
+
|
24 |
+
from scipy.stats import skew, kurtosis
|
25 |
+
|
26 |
+
|
27 |
+
# ========================== Конфиг ==========================
|
28 |
+
DEVICE = "cuda"
|
29 |
+
DTYPE = torch.float16
|
30 |
+
IMAGE_FOLDER = "/home/recoilme/dataset/alchemist"
|
31 |
+
MIN_SIZE = 1280
|
32 |
+
CROP_SIZE = 512
|
33 |
+
BATCH_SIZE = 10
|
34 |
+
MAX_IMAGES = 500
|
35 |
+
NUM_WORKERS = 4
|
36 |
+
SAMPLES_DIR = "vaetest"
|
37 |
+
|
38 |
+
VAE_LIST = [
|
39 |
+
# ("SD15 VAE", AutoencoderKL, "stable-diffusion-v1-5/stable-diffusion-v1-5", "vae"),
|
40 |
+
# ("SDXL VAE fp16 fix", AutoencoderKL, "madebyollin/sdxl-vae-fp16-fix", None),
|
41 |
+
("Wan2.2-TI2V-5B", AutoencoderKLWan, "Wan-AI/Wan2.2-TI2V-5B-Diffusers", "vae"),
|
42 |
+
("Wan2.2-T2V-A14B", AutoencoderKLWan, "Wan-AI/Wan2.2-T2V-A14B-Diffusers", "vae"),
|
43 |
+
#("SimpleVAE1", AutoencoderKL, "/home/recoilme/simplevae/simplevae", "simple_vae_nightly"),
|
44 |
+
#("SimpleVAE2", AutoencoderKL, "/home/recoilme/simplevae/simplevae", "simple_vae_nightly2"),
|
45 |
+
#("SimpleVAE nightly", AutoencoderKL, "AiArtLab/simplevae", "simple_vae_nightly"),
|
46 |
+
#("FLUX.1-schnell VAE", AutoencoderKL, "black-forest-labs/FLUX.1-schnell", "vae"),
|
47 |
+
# ("LTX-Video VAE", AutoencoderKLLTXVideo, "Lightricks/LTX-Video", "vae"),
|
48 |
+
("QwenImage", AutoencoderKLQwenImage, "Qwen/Qwen-Image", "vae"),
|
49 |
+
]
|
50 |
+
|
51 |
+
|
52 |
+
# ========================== Утилиты ==========================
|
53 |
+
def to_neg1_1(x: torch.Tensor) -> torch.Tensor:
|
54 |
+
return x * 2 - 1
|
55 |
+
|
56 |
+
|
57 |
+
def to_0_1(x: torch.Tensor) -> torch.Tensor:
|
58 |
+
return (x + 1) * 0.5
|
59 |
+
|
60 |
+
|
61 |
+
def safe_psnr(mse: float) -> float:
|
62 |
+
if mse <= 1e-12:
|
63 |
+
return float("inf")
|
64 |
+
return 10.0 * float(np.log10(1.0 / mse))
|
65 |
+
|
66 |
+
|
67 |
+
def is_video_like_vae(vae) -> bool:
|
68 |
+
# Wan и LTX-Video ждут [B, C, T, H, W]
|
69 |
+
return isinstance(vae, (AutoencoderKLWan, AutoencoderKLLTXVideo,AutoencoderKLQwenImage))
|
70 |
+
|
71 |
+
|
72 |
+
def add_time_dim_if_needed(x: torch.Tensor, vae) -> torch.Tensor:
|
73 |
+
if is_video_like_vae(vae) and x.ndim == 4:
|
74 |
+
return x.unsqueeze(2) # -> [B, C, 1, H, W]
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
def strip_time_dim_if_possible(x: torch.Tensor, vae) -> torch.Tensor:
|
79 |
+
if is_video_like_vae(vae) and x.ndim == 5 and x.shape[2] == 1:
|
80 |
+
return x.squeeze(2) # -> [B, C, H, W]
|
81 |
+
return x
|
82 |
+
|
83 |
+
|
84 |
+
@torch.no_grad()
|
85 |
+
def sobel_edge_l1(real_0_1: torch.Tensor, fake_0_1: torch.Tensor) -> float:
|
86 |
+
real = to_neg1_1(real_0_1)
|
87 |
+
fake = to_neg1_1(fake_0_1)
|
88 |
+
kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32, device=real.device).view(1, 1, 3, 3)
|
89 |
+
ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=torch.float32, device=real.device).view(1, 1, 3, 3)
|
90 |
+
C = real.shape[1]
|
91 |
+
kx = kx.to(real.dtype).repeat(C, 1, 1, 1)
|
92 |
+
ky = ky.to(real.dtype).repeat(C, 1, 1, 1)
|
93 |
+
|
94 |
+
def grad_mag(x):
|
95 |
+
gx = F.conv2d(x, kx, padding=1, groups=C)
|
96 |
+
gy = F.conv2d(x, ky, padding=1, groups=C)
|
97 |
+
return torch.sqrt(gx * gx + gy * gy + 1e-12)
|
98 |
+
|
99 |
+
return F.l1_loss(grad_mag(fake), grad_mag(real)).item()
|
100 |
+
|
101 |
+
|
102 |
+
def flatten_channels(x: torch.Tensor) -> torch.Tensor:
|
103 |
+
# -> [C, N*H*W] или [C, N*T*H*W]
|
104 |
+
if x.ndim == 4:
|
105 |
+
return x.permute(1, 0, 2, 3).reshape(x.shape[1], -1)
|
106 |
+
elif x.ndim == 5:
|
107 |
+
return x.permute(1, 0, 2, 3, 4).reshape(x.shape[1], -1)
|
108 |
+
else:
|
109 |
+
raise ValueError(f"Unexpected tensor ndim={x.ndim}")
|
110 |
+
|
111 |
+
|
112 |
+
def _to_numpy_1d(x: Any) -> Optional[np.ndarray]:
|
113 |
+
if x is None:
|
114 |
+
return None
|
115 |
+
if isinstance(x, (int, float)):
|
116 |
+
return None
|
117 |
+
if isinstance(x, torch.Tensor):
|
118 |
+
x = x.detach().cpu().float().numpy()
|
119 |
+
elif isinstance(x, (list, tuple)):
|
120 |
+
x = np.array(x, dtype=np.float32)
|
121 |
+
elif isinstance(x, np.ndarray):
|
122 |
+
x = x.astype(np.float32, copy=False)
|
123 |
+
else:
|
124 |
+
return None
|
125 |
+
x = x.reshape(-1)
|
126 |
+
return x
|
127 |
+
|
128 |
+
|
129 |
+
def _to_float(x: Any) -> Optional[float]:
|
130 |
+
if x is None:
|
131 |
+
return None
|
132 |
+
if isinstance(x, (int, float)):
|
133 |
+
return float(x)
|
134 |
+
if isinstance(x, np.ndarray) and x.size == 1:
|
135 |
+
return float(x.item())
|
136 |
+
if isinstance(x, torch.Tensor) and x.numel() == 1:
|
137 |
+
return float(x.item())
|
138 |
+
return None
|
139 |
+
|
140 |
+
|
141 |
+
def get_norm_tensors_and_summary(vae, latent_like: torch.Tensor):
|
142 |
+
"""
|
143 |
+
Нормализация латентов: глобальная и поканальная.
|
144 |
+
Применение: сначала глобальная (scalar), затем поканальная (vector).
|
145 |
+
Если в конфиге есть несколько ключей — аккумулируем.
|
146 |
+
"""
|
147 |
+
cfg = getattr(vae, "config", vae)
|
148 |
+
|
149 |
+
scale_keys = [
|
150 |
+
"latents_std"
|
151 |
+
]
|
152 |
+
shift_keys = [
|
153 |
+
"latents_mean"
|
154 |
+
]
|
155 |
+
|
156 |
+
C = latent_like.shape[1]
|
157 |
+
nd = latent_like.ndim # 4 или 5
|
158 |
+
dev = latent_like.device
|
159 |
+
dt = latent_like.dtype
|
160 |
+
|
161 |
+
scale_global = getattr(vae.config, "scaling_factor", 1.0)
|
162 |
+
shift_global = getattr(vae.config, "shift_factor", 0.0)
|
163 |
+
if scale_global is None:
|
164 |
+
scale_global = 1.0
|
165 |
+
if shift_global is None:
|
166 |
+
shift_global = 0.0
|
167 |
+
|
168 |
+
scale_channel = np.ones(C, dtype=np.float32)
|
169 |
+
shift_channel = np.zeros(C, dtype=np.float32)
|
170 |
+
|
171 |
+
for k in scale_keys:
|
172 |
+
v = getattr(cfg, k, None)
|
173 |
+
if v is None:
|
174 |
+
continue
|
175 |
+
vec = _to_numpy_1d(v)
|
176 |
+
if vec is not None and vec.size == C:
|
177 |
+
scale_channel *= vec
|
178 |
+
else:
|
179 |
+
s = _to_float(v)
|
180 |
+
if s is not None:
|
181 |
+
scale_global *= s
|
182 |
+
|
183 |
+
for k in shift_keys:
|
184 |
+
v = getattr(cfg, k, None)
|
185 |
+
if v is None:
|
186 |
+
continue
|
187 |
+
vec = _to_numpy_1d(v)
|
188 |
+
if vec is not None and vec.size == C:
|
189 |
+
shift_channel += vec
|
190 |
+
else:
|
191 |
+
s = _to_float(v)
|
192 |
+
if s is not None:
|
193 |
+
shift_global += s
|
194 |
+
|
195 |
+
g_shape = [1] * nd
|
196 |
+
c_shape = [1] * nd
|
197 |
+
c_shape[1] = C
|
198 |
+
|
199 |
+
t_scale_g = torch.tensor(scale_global, dtype=dt, device=dev).view(*g_shape)
|
200 |
+
t_shift_g = torch.tensor(shift_global, dtype=dt, device=dev).view(*g_shape)
|
201 |
+
t_scale_c = torch.from_numpy(scale_channel).to(device=dev, dtype=dt).view(*c_shape)
|
202 |
+
t_shift_c = torch.from_numpy(shift_channel).to(device=dev, dtype=dt).view(*c_shape)
|
203 |
+
|
204 |
+
summary = {
|
205 |
+
"scale_global": float(scale_global),
|
206 |
+
"shift_global": float(shift_global),
|
207 |
+
"scale_channel_min": float(scale_channel.min()),
|
208 |
+
"scale_channel_mean": float(scale_channel.mean()),
|
209 |
+
"scale_channel_max": float(scale_channel.max()),
|
210 |
+
"shift_channel_min": float(shift_channel.min()),
|
211 |
+
"shift_channel_mean": float(shift_channel.mean()),
|
212 |
+
"shift_channel_max": float(shift_channel.max()),
|
213 |
+
}
|
214 |
+
return t_shift_g, t_scale_g, t_shift_c, t_scale_c, summary
|
215 |
+
|
216 |
+
|
217 |
+
@torch.no_grad()
|
218 |
+
def kl_divergence_per_image(mu: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor:
|
219 |
+
kl_map = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp()) # [B, ...]
|
220 |
+
return kl_map.float().view(kl_map.shape[0], -1).mean(dim=1) # [B]
|
221 |
+
|
222 |
+
|
223 |
+
def sanitize_filename(name: str) -> str:
|
224 |
+
name = name.replace("/", "_").replace("\\", "_").replace(" ", "_")
|
225 |
+
return "".join(ch if (ch.isalnum() or ch in "._-") else "_" for ch in name)
|
226 |
+
|
227 |
+
|
228 |
+
# ========================== Датасет ==========================
|
229 |
+
class ImageFolderDataset(Dataset):
|
230 |
+
def __init__(self, root_dir: str, extensions=(".png", ".jpg", ".jpeg", ".webp"), min_size=1024, crop_size=512, limit=None):
|
231 |
+
paths = []
|
232 |
+
for root, _, files in os.walk(root_dir):
|
233 |
+
for fname in files:
|
234 |
+
if fname.lower().endswith(extensions):
|
235 |
+
paths.append(os.path.join(root, fname))
|
236 |
+
if limit:
|
237 |
+
paths = paths[:limit]
|
238 |
+
|
239 |
+
valid = []
|
240 |
+
for p in tqdm(paths, desc="Проверяем файлы"):
|
241 |
+
try:
|
242 |
+
with Image.open(p) as im:
|
243 |
+
im.verify()
|
244 |
+
valid.append(p)
|
245 |
+
except Exception:
|
246 |
+
pass
|
247 |
+
if not valid:
|
248 |
+
raise RuntimeError(f"Нет валидных изображений в {root_dir}")
|
249 |
+
random.shuffle(valid)
|
250 |
+
self.paths = valid
|
251 |
+
print(f"Найдено {len(self.paths)} изображений")
|
252 |
+
|
253 |
+
self.transform = Compose([
|
254 |
+
Resize(min_size),
|
255 |
+
CenterCrop(crop_size),
|
256 |
+
ToTensor(), # 0..1, float32
|
257 |
+
])
|
258 |
+
|
259 |
+
def __len__(self):
|
260 |
+
return len(self.paths)
|
261 |
+
|
262 |
+
def __getitem__(self, idx):
|
263 |
+
with Image.open(self.paths[idx]) as img:
|
264 |
+
img = img.convert("RGB")
|
265 |
+
return self.transform(img)
|
266 |
+
|
267 |
+
|
268 |
+
# ========================== Основное ==========================
|
269 |
+
def main():
|
270 |
+
torch.set_grad_enabled(False)
|
271 |
+
os.makedirs(SAMPLES_DIR, exist_ok=True)
|
272 |
+
|
273 |
+
dataset = ImageFolderDataset(IMAGE_FOLDER, min_size=MIN_SIZE, crop_size=CROP_SIZE, limit=MAX_IMAGES)
|
274 |
+
loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=NUM_WORKERS, pin_memory=True)
|
275 |
+
|
276 |
+
lpips_net = lpips.LPIPS(net="vgg").to(DEVICE).eval()
|
277 |
+
|
278 |
+
# Загрузка VAE
|
279 |
+
vaes: List[Tuple[str, object]] = []
|
280 |
+
print("\nЗагрузка VAE...")
|
281 |
+
for human_name, vae_class, model_path, subfolder in VAE_LIST:
|
282 |
+
try:
|
283 |
+
vae = vae_class.from_pretrained(model_path, subfolder=subfolder, torch_dtype=DTYPE)
|
284 |
+
vae = vae.to(DEVICE).eval()
|
285 |
+
vaes.append((human_name, vae))
|
286 |
+
print(f" ✅ {human_name}")
|
287 |
+
except Exception as e:
|
288 |
+
print(f" ❌ {human_name}: {e}")
|
289 |
+
|
290 |
+
if not vaes:
|
291 |
+
print("Нет успешно загруженных VAE. Выходим.")
|
292 |
+
return
|
293 |
+
|
294 |
+
# Агрегаторы
|
295 |
+
per_model_metrics: Dict[str, Dict[str, float]] = {
|
296 |
+
name: {"mse": 0.0, "psnr": 0.0, "lpips": 0.0, "edge": 0.0, "kl": 0.0, "count": 0.0}
|
297 |
+
for name, _ in vaes
|
298 |
+
}
|
299 |
+
|
300 |
+
buffers_zmodel: Dict[str, List[torch.Tensor]] = {name: [] for name, _ in vaes}
|
301 |
+
norm_summaries: Dict[str, Dict[str, float]] = {}
|
302 |
+
|
303 |
+
# Флаг для сохранения первой картинки
|
304 |
+
saved_first_for: Dict[str, bool] = {name: False for name, _ in vaes}
|
305 |
+
|
306 |
+
for batch_0_1 in tqdm(loader, desc="Батчи"):
|
307 |
+
batch_0_1 = batch_0_1.to(DEVICE, torch.float32)
|
308 |
+
batch_neg1_1 = to_neg1_1(batch_0_1).to(DTYPE)
|
309 |
+
|
310 |
+
for model_name, vae in vaes:
|
311 |
+
x_in = add_time_dim_if_needed(batch_neg1_1, vae)
|
312 |
+
|
313 |
+
posterior = vae.encode(x_in).latent_dist
|
314 |
+
mu, logvar = posterior.mean, posterior.logvar
|
315 |
+
|
316 |
+
# Реконструкция (детерминированно)
|
317 |
+
z_raw_mode = posterior.mode()
|
318 |
+
x_dec = vae.decode(z_raw_mode).sample # [-1, 1]
|
319 |
+
x_dec = strip_time_dim_if_possible(x_dec, vae)
|
320 |
+
x_rec_0_1 = to_0_1(x_dec.float()).clamp(0, 1)
|
321 |
+
|
322 |
+
# Латенты для UNet: global -> channelwise
|
323 |
+
z_raw_sample = posterior.sample()
|
324 |
+
t_shift_g, t_scale_g, t_shift_c, t_scale_c, summary = get_norm_tensors_and_summary(vae, z_raw_sample)
|
325 |
+
|
326 |
+
if model_name not in norm_summaries:
|
327 |
+
norm_summaries[model_name] = summary
|
328 |
+
|
329 |
+
z_tmp = (z_raw_sample - t_shift_g) * t_scale_g
|
330 |
+
z_model = (z_tmp - t_shift_c) * t_scale_c
|
331 |
+
z_model = strip_time_dim_if_possible(z_model, vae)
|
332 |
+
|
333 |
+
buffers_zmodel[model_name].append(z_model.detach().to("cpu", torch.float32))
|
334 |
+
|
335 |
+
# Сохранить первую картинку (оригинал и реконструкцию) для каждого VAE
|
336 |
+
if not saved_first_for[model_name]:
|
337 |
+
safe = sanitize_filename(model_name)
|
338 |
+
orig_path = os.path.join(SAMPLES_DIR, f"{safe}_original.png")
|
339 |
+
dec_path = os.path.join(SAMPLES_DIR, f"{safe}_decoded.png")
|
340 |
+
save_image(batch_0_1[0:1].cpu(), orig_path)
|
341 |
+
save_image(x_rec_0_1[0:1].cpu(), dec_path)
|
342 |
+
saved_first_for[model_name] = True
|
343 |
+
|
344 |
+
# Метрики по картинкам
|
345 |
+
B = batch_0_1.shape[0]
|
346 |
+
for i in range(B):
|
347 |
+
gt = batch_0_1[i:i+1]
|
348 |
+
rec = x_rec_0_1[i:i+1]
|
349 |
+
|
350 |
+
mse = F.mse_loss(gt, rec).item()
|
351 |
+
psnr = safe_psnr(mse)
|
352 |
+
lp = float(lpips_net(gt, rec, normalize=True).mean().item())
|
353 |
+
edge = sobel_edge_l1(gt, rec)
|
354 |
+
|
355 |
+
per_model_metrics[model_name]["mse"] += mse
|
356 |
+
per_model_metrics[model_name]["psnr"] += psnr
|
357 |
+
per_model_metrics[model_name]["lpips"] += lp
|
358 |
+
per_model_metrics[model_name]["edge"] += edge
|
359 |
+
|
360 |
+
# KL per-image
|
361 |
+
kl_pi = kl_divergence_per_image(mu, logvar) # [B]
|
362 |
+
per_model_metrics[model_name]["kl"] += float(kl_pi.sum().item())
|
363 |
+
per_model_metrics[model_name]["count"] += B
|
364 |
+
|
365 |
+
# Усреднение метрик
|
366 |
+
for name in per_model_metrics:
|
367 |
+
c = max(1.0, per_model_metrics[name]["count"])
|
368 |
+
for k in ["mse", "psnr", "lpips", "edge", "kl"]:
|
369 |
+
per_model_metrics[name][k] /= c
|
370 |
+
|
371 |
+
# Подсчёт статистик латентов и нормальности
|
372 |
+
per_model_latent_stats = {}
|
373 |
+
for name, _ in vaes:
|
374 |
+
if not buffers_zmodel[name]:
|
375 |
+
continue
|
376 |
+
Z = torch.cat(buffers_zmodel[name], dim=0) # [N, C, H, W]
|
377 |
+
|
378 |
+
# Глобальные
|
379 |
+
z_min = float(Z.min().item())
|
380 |
+
z_mean = float(Z.mean().item())
|
381 |
+
z_max = float(Z.max().item())
|
382 |
+
z_std = float(Z.std(unbiased=True).item())
|
383 |
+
|
384 |
+
# Пер-канально: skew/kurtosis
|
385 |
+
Z_ch = flatten_channels(Z).numpy() # [C, *]
|
386 |
+
C = Z_ch.shape[0]
|
387 |
+
sk = np.zeros(C, dtype=np.float64)
|
388 |
+
ku = np.zeros(C, dtype=np.float64)
|
389 |
+
for c in range(C):
|
390 |
+
v = Z_ch[c]
|
391 |
+
sk[c] = float(skew(v, bias=False))
|
392 |
+
ku[c] = float(kurtosis(v, fisher=True, bias=False))
|
393 |
+
|
394 |
+
skew_min, skew_mean, skew_max = float(sk.min()), float(sk.mean()), float(sk.max())
|
395 |
+
kurt_min, kurt_mean, kurt_max = float(ku.min()), float(ku.mean()), float(ku.max())
|
396 |
+
mean_abs_skew = float(np.mean(np.abs(sk)))
|
397 |
+
mean_abs_kurt = float(np.mean(np.abs(ku)))
|
398 |
+
|
399 |
+
per_model_latent_stats[name] = {
|
400 |
+
"Z_min": z_min, "Z_mean": z_mean, "Z_max": z_max, "Z_std": z_std,
|
401 |
+
"skew_min": skew_min, "skew_mean": skew_mean, "skew_max": skew_max,
|
402 |
+
"kurt_min": kurt_min, "kurt_mean": kurt_mean, "kurt_max": kurt_max,
|
403 |
+
"mean_abs_skew": mean_abs_skew, "mean_abs_kurt": mean_abs_kurt,
|
404 |
+
}
|
405 |
+
|
406 |
+
# Печать параметров нормализации (shift/scale)
|
407 |
+
print("\n=== Параметры нормализации ��атентов (как применялись) ===")
|
408 |
+
for name, _ in vaes:
|
409 |
+
if name not in norm_summaries:
|
410 |
+
continue
|
411 |
+
s = norm_summaries[name]
|
412 |
+
print(
|
413 |
+
f"{name:26s} | "
|
414 |
+
f"shift_g={s['shift_global']:.6g} scale_g={s['scale_global']:.6g} | "
|
415 |
+
f"shift_c[min/mean/max]=[{s['shift_channel_min']:.6g}, {s['shift_channel_mean']:.6g}, {s['shift_channel_max']:.6g}] | "
|
416 |
+
f"scale_c[min/mean/max]=[{s['scale_channel_min']:.6g}, {s['scale_channel_mean']:.6g}, {s['scale_channel_max']:.6g}]"
|
417 |
+
)
|
418 |
+
|
419 |
+
# Абсолютные метрики
|
420 |
+
print("\n=== Абсолютные метрики реконструкции и латентов ===")
|
421 |
+
for name, _ in vaes:
|
422 |
+
if name not in per_model_latent_stats:
|
423 |
+
continue
|
424 |
+
m = per_model_metrics[name]
|
425 |
+
s = per_model_latent_stats[name]
|
426 |
+
print(
|
427 |
+
f"{name:26s} | "
|
428 |
+
f"MSE={m['mse']:.3e} PSNR={m['psnr']:.2f} LPIPS={m['lpips']:.3f} Edge={m['edge']:.3f} KL={m['kl']:.3f} | "
|
429 |
+
f"Z[min/mean/max/std]=[{s['Z_min']:.3f}, {s['Z_mean']:.3f}, {s['Z_max']:.3f}, {s['Z_std']:.3f}] | "
|
430 |
+
f"Skew[min/mean/max]=[{s['skew_min']:.3f}, {s['skew_mean']:.3f}, {s['skew_max']:.3f}] | "
|
431 |
+
f"Kurt[min/mean/max]=[{s['kurt_min']:.3f}, {s['kurt_mean']:.3f}, {s['kurt_max']:.3f}]"
|
432 |
+
)
|
433 |
+
|
434 |
+
# Сравнение с первой моделью
|
435 |
+
baseline = vaes[0][0]
|
436 |
+
print("\n=== Сравнение с первой моделью (проценты) ===")
|
437 |
+
print(f"| {'Модель':26s} | {'MSE':>9s} | {'PSNR':>9s} | {'LPIPS':>9s} | {'Edge':>9s} | {'Skew|0':>9s} | {'Kurt|0':>9s} |")
|
438 |
+
print(f"|{'-'*28}|{'-'*11}|{'-'*11}|{'-'*11}|{'-'*11}|{'-'*11}|{'-'*11}|")
|
439 |
+
|
440 |
+
b_m = per_model_metrics[baseline]
|
441 |
+
b_s = per_model_latent_stats[baseline]
|
442 |
+
|
443 |
+
for name, _ in vaes:
|
444 |
+
m = per_model_metrics[name]
|
445 |
+
s = per_model_latent_stats[name]
|
446 |
+
|
447 |
+
mse_pct = (b_m["mse"] / max(1e-12, m["mse"])) * 100.0 # меньше лучше
|
448 |
+
psnr_pct = (m["psnr"] / max(1e-12, b_m["psnr"])) * 100.0 # больше лучше
|
449 |
+
lpips_pct= (b_m["lpips"] / max(1e-12, m["lpips"])) * 100.0 # меньше лучше
|
450 |
+
edge_pct = (b_m["edge"] / max(1e-12, m["edge"])) * 100.0 # меньше лучше
|
451 |
+
|
452 |
+
skew0_pct = (b_s["mean_abs_skew"] / max(1e-12, s["mean_abs_skew"])) * 100.0
|
453 |
+
kurt0_pct = (b_s["mean_abs_kurt"] / max(1e-12, s["mean_abs_kurt"])) * 100.0
|
454 |
+
|
455 |
+
if name == baseline:
|
456 |
+
print(f"| {name:26s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} |")
|
457 |
+
else:
|
458 |
+
print(f"| {name:26s} | {mse_pct:8.1f}% | {psnr_pct:8.1f}% | {lpips_pct:8.1f}% | {edge_pct:8.1f}% | {skew0_pct:8.1f}% | {kurt0_pct:8.1f}% |")
|
459 |
+
|
460 |
+
# ========================== Коррекции для последнего VAE + сохранение в JSON ==========================
|
461 |
+
last_name = vaes[-1][0]
|
462 |
+
if buffers_zmodel[last_name]:
|
463 |
+
Z = torch.cat(buffers_zmodel[last_name], dim=0) # [N, C, H, W]
|
464 |
+
|
465 |
+
# Глобальная коррекция (по всем каналам/пикселям)
|
466 |
+
z_mean = float(Z.mean().item())
|
467 |
+
z_std = float(Z.std(unbiased=True).item())
|
468 |
+
correction_global = {
|
469 |
+
"shift": -z_mean,
|
470 |
+
"scale": (1.0 / z_std) if z_std > 1e-12 else 1.0
|
471 |
+
}
|
472 |
+
|
473 |
+
# Поканальная коррекция
|
474 |
+
Z_ch = flatten_channels(Z) # [C, M]
|
475 |
+
ch_means_t = Z_ch.mean(dim=1) # [C]
|
476 |
+
ch_stds_t = Z_ch.std(dim=1, unbiased=True) + 1e-12 # [C]
|
477 |
+
ch_means = [float(x) for x in ch_means_t.tolist()]
|
478 |
+
ch_stds = [float(x) for x in ch_stds_t.tolist()]
|
479 |
+
|
480 |
+
correction_per_channel = [
|
481 |
+
{"shift": float(-m), "scale": float(1.0 / s)}
|
482 |
+
for m, s in zip(ch_means, ch_stds)
|
483 |
+
]
|
484 |
+
|
485 |
+
print(f"\n=== Доп. коррекция для {last_name} (поверх VAE-нормализации) ===")
|
486 |
+
print(f"global_correction = {correction_global}")
|
487 |
+
print(f"channelwise_means = {ch_means}")
|
488 |
+
print(f"channelwise_stds = {ch_stds}")
|
489 |
+
print(f"channelwise_correction = {correction_per_channel}")
|
490 |
+
|
491 |
+
# Сохранение в JSON
|
492 |
+
json_path = os.path.join(SAMPLES_DIR, f"{sanitize_filename(last_name)}_correction.json")
|
493 |
+
to_save = {
|
494 |
+
"model_name": last_name,
|
495 |
+
"vae_normalization_summary": norm_summaries.get(last_name, {}),
|
496 |
+
"global_correction": correction_global,
|
497 |
+
"per_channel_means": ch_means,
|
498 |
+
"per_channel_stds": ch_stds,
|
499 |
+
"per_channel_correction": correction_per_channel,
|
500 |
+
"apply_order": {
|
501 |
+
"forward": "z_model -> (z - global_shift)*global_scale -> (per-channel: (z - mean_c)/std_c)",
|
502 |
+
"inverse": "z_corr -> (per-channel: z*std_c + mean_c) -> (z/global_scale + global_shift)"
|
503 |
+
},
|
504 |
+
"note": "Эти коэффициенты рассчитаны по z_model (после встроенных VAE shift/scale), чтобы привести распределение к N(0,1)."
|
505 |
+
}
|
506 |
+
with open(json_path, "w", encoding="utf-8") as f:
|
507 |
+
json.dump(to_save, f, ensure_ascii=False, indent=2)
|
508 |
+
print("Corrections JSON saved to:", os.path.abspath(json_path))
|
509 |
+
|
510 |
+
print("\n✅ Готово. Сэмплы сохранены в:", os.path.abspath(SAMPLES_DIR))
|
511 |
+
|
512 |
+
|
513 |
+
if __name__ == "__main__":
|
514 |
+
main()
|
samples/sample_0.jpg
ADDED
![]() |
Git LFS Details
|
samples/sample_1.jpg
ADDED
![]() |
Git LFS Details
|
samples/sample_2.jpg
ADDED
![]() |
Git LFS Details
|
samples/sample_decoded.jpg
ADDED
![]() |
Git LFS Details
|
samples/sample_real.jpg
ADDED
![]() |
Git LFS Details
|
simple_vae/diffusion_pytorch_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 335311892
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5f0a20e403669e880b510514ee575a2a9cb74a1b36ab0e31fc68ef66c2173d7
|
3 |
size 335311892
|
simple_vae_nightly/diffusion_pytorch_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 335311892
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b705da7f401289eefa22570514d7c1b9b2f9fd32a71159e2d3d5888f74e41cd
|
3 |
size 335311892
|
train_sdxl_vae_full.py
CHANGED
@@ -58,7 +58,7 @@ device = None # accelerator задаст устройство
|
|
58 |
# CHANGED: добавлен параметр для полного обучения VAE (а не только декодера).
|
59 |
# Если False — поведение прежнее: учим только decoder.* (up_blocks + mid_block).
|
60 |
# Если True — размораживаем ВСЮ модель и добавляем KL-loss для энкодера.
|
61 |
-
full_training =
|
62 |
|
63 |
# CHANGED: добавлен вес (через долю в нормализаторе) для KL, используется только при full_training=True.
|
64 |
kl_ratio = 0.05 # простая доля для KL в общей смеси (KISS). Игнорируется, если full_training=False.
|
@@ -66,12 +66,12 @@ kl_ratio = 0.05 # простая доля для KL в общей с
|
|
66 |
# --- Пропорции лоссов и окно медианного нормирования (КОЭФ., не значения) ---
|
67 |
# Итоговые доли в total loss (сумма = 1.0 после нормализации).
|
68 |
loss_ratios = {
|
69 |
-
"lpips": 0.
|
70 |
"edge": 0.05,
|
71 |
"mse": 0.05,
|
72 |
"mae": 0.05,
|
73 |
# CHANGED: заранее добавлен ключ "kl" (по умолчанию 0.0). Если включаем full_training — активируем ниже.
|
74 |
-
"kl": 0.
|
75 |
}
|
76 |
median_coeff_steps = 256 # за сколько шагов считать медианные коэффициенты
|
77 |
|
|
|
58 |
# CHANGED: добавлен параметр для полного обучения VAE (а не только декодера).
|
59 |
# Если False — поведение прежнее: учим только decoder.* (up_blocks + mid_block).
|
60 |
# Если True — размораживаем ВСЮ модель и добавляем KL-loss для энкодера.
|
61 |
+
full_training = True
|
62 |
|
63 |
# CHANGED: добавлен вес (через долю в нормализаторе) для KL, используется только при full_training=True.
|
64 |
kl_ratio = 0.05 # простая доля для KL в общей смеси (KISS). Игнорируется, если full_training=False.
|
|
|
66 |
# --- Пропорции лоссов и окно медианного нормирования (КОЭФ., не значения) ---
|
67 |
# Итоговые доли в total loss (сумма = 1.0 после нормализации).
|
68 |
loss_ratios = {
|
69 |
+
"lpips": 0.80,
|
70 |
"edge": 0.05,
|
71 |
"mse": 0.05,
|
72 |
"mae": 0.05,
|
73 |
# CHANGED: заранее добавлен ключ "kl" (по умолчанию 0.0). Если включаем full_training — активируем ниже.
|
74 |
+
"kl": 0.05,
|
75 |
}
|
76 |
median_coeff_steps = 256 # за сколько шагов считать медианные коэффициенты
|
77 |
|
train_sdxl_vae_qwen.py
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import re
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import random
|
8 |
+
import gc
|
9 |
+
from datetime import datetime
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
import torchvision.transforms as transforms
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from torch.utils.data import DataLoader, Dataset
|
15 |
+
from torch.optim.lr_scheduler import LambdaLR
|
16 |
+
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
|
17 |
+
# QWEN: импорт класса
|
18 |
+
from diffusers import AutoencoderKLQwenImage
|
19 |
+
|
20 |
+
from accelerate import Accelerator
|
21 |
+
from PIL import Image, UnidentifiedImageError
|
22 |
+
from tqdm import tqdm
|
23 |
+
import bitsandbytes as bnb
|
24 |
+
import wandb
|
25 |
+
import lpips # pip install lpips
|
26 |
+
from collections import deque
|
27 |
+
|
28 |
+
# --------------------------- Параметры ---------------------------
|
29 |
+
ds_path = "/workspace/png"
|
30 |
+
project = "qwen_vae"
|
31 |
+
batch_size = 3
|
32 |
+
base_learning_rate = 5e-5
|
33 |
+
min_learning_rate = 9e-7
|
34 |
+
num_epochs = 16
|
35 |
+
sample_interval_share = 10
|
36 |
+
use_wandb = True
|
37 |
+
save_model = True
|
38 |
+
use_decay = True
|
39 |
+
optimizer_type = "adam8bit"
|
40 |
+
dtype = torch.float32
|
41 |
+
|
42 |
+
model_resolution = 512
|
43 |
+
high_resolution = 512
|
44 |
+
limit = 0
|
45 |
+
save_barrier = 1.03
|
46 |
+
warmup_percent = 0.01
|
47 |
+
percentile_clipping = 95
|
48 |
+
beta2 = 0.97
|
49 |
+
eps = 1e-6
|
50 |
+
clip_grad_norm = 1.0
|
51 |
+
mixed_precision = "no"
|
52 |
+
gradient_accumulation_steps = 5
|
53 |
+
generated_folder = "samples"
|
54 |
+
save_as = "wen_vae_nightly"
|
55 |
+
num_workers = 0
|
56 |
+
device = None
|
57 |
+
|
58 |
+
# --- Режимы обучения ---
|
59 |
+
# QWEN: учим только декодер
|
60 |
+
train_decoder_only = True
|
61 |
+
full_training = False # если True — учим весь VAE и добавляем KL (ниже)
|
62 |
+
kl_ratio = 0.05
|
63 |
+
|
64 |
+
# Доли лоссов
|
65 |
+
loss_ratios = {
|
66 |
+
"lpips": 0.80,
|
67 |
+
"edge": 0.05,
|
68 |
+
"mse": 0.10,
|
69 |
+
"mae": 0.05,
|
70 |
+
"kl": 0.00, # активируем при full_training=True
|
71 |
+
}
|
72 |
+
median_coeff_steps = 256
|
73 |
+
|
74 |
+
resize_long_side = 1280 # ресайз длинной стороны исходных картинок
|
75 |
+
|
76 |
+
# QWEN: конфиг загрузки модели
|
77 |
+
vae_kind = "qwen" # "qwen" или "kl" (обычный)
|
78 |
+
vae_model_id = "Qwen/Qwen-Image"
|
79 |
+
vae_subfolder = "vae"
|
80 |
+
|
81 |
+
Path(generated_folder).mkdir(parents=True, exist_ok=True)
|
82 |
+
|
83 |
+
accelerator = Accelerator(
|
84 |
+
mixed_precision=mixed_precision,
|
85 |
+
gradient_accumulation_steps=gradient_accumulation_steps
|
86 |
+
)
|
87 |
+
device = accelerator.device
|
88 |
+
|
89 |
+
# reproducibility
|
90 |
+
seed = int(datetime.now().strftime("%Y%m%d"))
|
91 |
+
torch.manual_seed(seed); np.random.seed(seed); random.seed(seed)
|
92 |
+
torch.backends.cudnn.benchmark = False
|
93 |
+
|
94 |
+
# --------------------------- WandB ---------------------------
|
95 |
+
if use_wandb and accelerator.is_main_process:
|
96 |
+
wandb.init(project=project, config={
|
97 |
+
"batch_size": batch_size,
|
98 |
+
"base_learning_rate": base_learning_rate,
|
99 |
+
"num_epochs": num_epochs,
|
100 |
+
"optimizer_type": optimizer_type,
|
101 |
+
"model_resolution": model_resolution,
|
102 |
+
"high_resolution": high_resolution,
|
103 |
+
"gradient_accumulation_steps": gradient_accumulation_steps,
|
104 |
+
"train_decoder_only": train_decoder_only,
|
105 |
+
"full_training": full_training,
|
106 |
+
"kl_ratio": kl_ratio,
|
107 |
+
"vae_kind": vae_kind,
|
108 |
+
"vae_model_id": vae_model_id,
|
109 |
+
})
|
110 |
+
|
111 |
+
# --------------------------- VAE ---------------------------
|
112 |
+
def is_qwen_vae(vae) -> bool:
|
113 |
+
return isinstance(vae, AutoencoderKLQwenImage) or ("Qwen" in vae.__class__.__name__)
|
114 |
+
|
115 |
+
# загрузка
|
116 |
+
if vae_kind == "qwen":
|
117 |
+
vae = AutoencoderKLQwenImage.from_pretrained(vae_model_id, subfolder=vae_subfolder)
|
118 |
+
else:
|
119 |
+
# старое поведение (пример)
|
120 |
+
if model_resolution==high_resolution:
|
121 |
+
vae = AutoencoderKL.from_pretrained(project)
|
122 |
+
else:
|
123 |
+
vae = AsymmetricAutoencoderKL.from_pretrained(project)
|
124 |
+
|
125 |
+
vae = vae.to(dtype)
|
126 |
+
|
127 |
+
# torch.compile (опционально)
|
128 |
+
if hasattr(torch, "compile"):
|
129 |
+
try:
|
130 |
+
vae = torch.compile(vae)
|
131 |
+
except Exception as e:
|
132 |
+
print(f"[WARN] torch.compile failed: {e}")
|
133 |
+
|
134 |
+
# --------------------------- Freeze/Unfreeze ---------------------------
|
135 |
+
for p in vae.parameters():
|
136 |
+
p.requires_grad = False
|
137 |
+
|
138 |
+
unfrozen_param_names = []
|
139 |
+
|
140 |
+
if full_training and not train_decoder_only:
|
141 |
+
# учим всю модель
|
142 |
+
for name, p in vae.named_parameters():
|
143 |
+
p.requires_grad = True
|
144 |
+
unfrozen_param_names.append(name)
|
145 |
+
loss_ratios["kl"] = float(kl_ratio)
|
146 |
+
trainable_module = vae
|
147 |
+
else:
|
148 |
+
# QWEN: учим только декодер (и post_quant_conv — часть декодерного тракта)
|
149 |
+
# универсально: всё, что начинается с "decoder." или "post_quant_conv"
|
150 |
+
for name, p in vae.named_parameters():
|
151 |
+
if name.startswith("decoder.") or name.startswith("post_quant_conv"):
|
152 |
+
p.requires_grad = True
|
153 |
+
unfrozen_param_names.append(name)
|
154 |
+
trainable_module = vae.decoder if hasattr(vae, "decoder") else vae
|
155 |
+
|
156 |
+
print(f"[INFO] Разморожено параметров: {len(unfrozen_param_names)}. Первые 200 имён:")
|
157 |
+
for nm in unfrozen_param_names[:200]:
|
158 |
+
print(" ", nm)
|
159 |
+
|
160 |
+
# --------------------------- Датасет ---------------------------
|
161 |
+
class PngFolderDataset(Dataset):
|
162 |
+
def __init__(self, root_dir, min_exts=('.png',), resolution=1024, limit=0):
|
163 |
+
self.root_dir = root_dir
|
164 |
+
self.resolution = resolution
|
165 |
+
self.paths = []
|
166 |
+
for root, _, files in os.walk(root_dir):
|
167 |
+
for fname in files:
|
168 |
+
if fname.lower().endswith(tuple(ext.lower() for ext in min_exts)):
|
169 |
+
self.paths.append(os.path.join(root, fname))
|
170 |
+
if limit:
|
171 |
+
self.paths = self.paths[:limit]
|
172 |
+
valid = []
|
173 |
+
for p in self.paths:
|
174 |
+
try:
|
175 |
+
with Image.open(p) as im:
|
176 |
+
im.verify()
|
177 |
+
valid.append(p)
|
178 |
+
except (OSError, UnidentifiedImageError):
|
179 |
+
continue
|
180 |
+
self.paths = valid
|
181 |
+
if len(self.paths) == 0:
|
182 |
+
raise RuntimeError(f"No valid PNG images found under {root_dir}")
|
183 |
+
random.shuffle(self.paths)
|
184 |
+
|
185 |
+
def __len__(self):
|
186 |
+
return len(self.paths)
|
187 |
+
|
188 |
+
def __getitem__(self, idx):
|
189 |
+
p = self.paths[idx % len(self.paths)]
|
190 |
+
with Image.open(p) as img:
|
191 |
+
img = img.convert("RGB")
|
192 |
+
if not resize_long_side or resize_long_side <= 0:
|
193 |
+
return img
|
194 |
+
w, h = img.size
|
195 |
+
long = max(w, h)
|
196 |
+
if long <= resize_long_side:
|
197 |
+
return img
|
198 |
+
scale = resize_long_side / float(long)
|
199 |
+
new_w = int(round(w * scale))
|
200 |
+
new_h = int(round(h * scale))
|
201 |
+
return img.resize((new_w, new_h), Image.LANCZOS)
|
202 |
+
|
203 |
+
def random_crop(img, sz):
|
204 |
+
w, h = img.size
|
205 |
+
if w < sz or h < sz:
|
206 |
+
img = img.resize((max(sz, w), max(sz, h)), Image.LANCZOS)
|
207 |
+
x = random.randint(0, max(1, img.width - sz))
|
208 |
+
y = random.randint(0, max(1, img.height - sz))
|
209 |
+
return img.crop((x, y, x + sz, y + sz))
|
210 |
+
|
211 |
+
tfm = transforms.Compose([
|
212 |
+
transforms.ToTensor(),
|
213 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
214 |
+
])
|
215 |
+
|
216 |
+
dataset = PngFolderDataset(ds_path, min_exts=('.png',), resolution=high_resolution, limit=limit)
|
217 |
+
if len(dataset) < batch_size:
|
218 |
+
raise RuntimeError(f"Not enough valid images ({len(dataset)}) to form a batch of size {batch_size}")
|
219 |
+
|
220 |
+
def collate_fn(batch):
|
221 |
+
imgs = []
|
222 |
+
for img in batch:
|
223 |
+
img = random_crop(img, high_resolution)
|
224 |
+
imgs.append(tfm(img))
|
225 |
+
return torch.stack(imgs)
|
226 |
+
|
227 |
+
dataloader = DataLoader(
|
228 |
+
dataset,
|
229 |
+
batch_size=batch_size,
|
230 |
+
shuffle=True,
|
231 |
+
collate_fn=collate_fn,
|
232 |
+
num_workers=num_workers,
|
233 |
+
pin_memory=True,
|
234 |
+
drop_last=True
|
235 |
+
)
|
236 |
+
|
237 |
+
# --------------------------- Оптимизатор ---------------------------
|
238 |
+
def get_param_groups(module, weight_decay=0.001):
|
239 |
+
no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight", "ln_1.weight", "ln_f.weight"]
|
240 |
+
decay_params, no_decay_params = [], []
|
241 |
+
for n, p in vae.named_parameters(): # глобально по vae, с фильтром requires_grad
|
242 |
+
if not p.requires_grad:
|
243 |
+
continue
|
244 |
+
if any(nd in n for nd in no_decay):
|
245 |
+
no_decay_params.append(p)
|
246 |
+
else:
|
247 |
+
decay_params.append(p)
|
248 |
+
return [
|
249 |
+
{"params": decay_params, "weight_decay": weight_decay},
|
250 |
+
{"params": no_decay_params, "weight_decay": 0.0},
|
251 |
+
]
|
252 |
+
|
253 |
+
def create_optimizer(name, param_groups):
|
254 |
+
if name == "adam8bit":
|
255 |
+
return bnb.optim.AdamW8bit(param_groups, lr=base_learning_rate, betas=(0.9, beta2), eps=eps)
|
256 |
+
raise ValueError(name)
|
257 |
+
|
258 |
+
param_groups = get_param_groups(trainable_module, weight_decay=0.001)
|
259 |
+
optimizer = create_optimizer(optimizer_type, param_groups)
|
260 |
+
|
261 |
+
# --------------------------- LR schedule ---------------------------
|
262 |
+
batches_per_epoch = len(dataloader)
|
263 |
+
steps_per_epoch = int(math.ceil(batches_per_epoch / float(gradient_accumulation_steps)))
|
264 |
+
total_steps = steps_per_epoch * num_epochs
|
265 |
+
|
266 |
+
def lr_lambda(step):
|
267 |
+
if not use_decay:
|
268 |
+
return 1.0
|
269 |
+
x = float(step) / float(max(1, total_steps))
|
270 |
+
warmup = float(warmup_percent)
|
271 |
+
min_ratio = float(min_learning_rate) / float(base_learning_rate)
|
272 |
+
if x < warmup:
|
273 |
+
return min_ratio + (1.0 - min_ratio) * (x / warmup)
|
274 |
+
decay_ratio = (x - warmup) / (1.0 - warmup)
|
275 |
+
return min_ratio + 0.5 * (1.0 - min_ratio) * (1.0 + math.cos(math.pi * decay_ratio))
|
276 |
+
|
277 |
+
scheduler = LambdaLR(optimizer, lr_lambda)
|
278 |
+
|
279 |
+
# Подготовка
|
280 |
+
dataloader, vae, optimizer, scheduler = accelerator.prepare(dataloader, vae, optimizer, scheduler)
|
281 |
+
trainable_params = [p for p in vae.parameters() if p.requires_grad]
|
282 |
+
|
283 |
+
# --------------------------- LPIPS и вспомогательные ---------------------------
|
284 |
+
_lpips_net = None
|
285 |
+
def _get_lpips():
|
286 |
+
global _lpips_net
|
287 |
+
if _lpips_net is None:
|
288 |
+
_lpips_net = lpips.LPIPS(net='vgg', verbose=False).eval().to(accelerator.device).eval()
|
289 |
+
return _lpips_net
|
290 |
+
|
291 |
+
_sobel_kx = torch.tensor([[[[-1,0,1],[-2,0,2],[-1,0,1]]]], dtype=torch.float32)
|
292 |
+
_sobel_ky = torch.tensor([[[[-1,-2,-1],[0,0,0],[1,2,1]]]], dtype=torch.float32)
|
293 |
+
def sobel_edges(x: torch.Tensor) -> torch.Tensor:
|
294 |
+
C = x.shape[1]
|
295 |
+
kx = _sobel_kx.to(x.device, x.dtype).repeat(C, 1, 1, 1)
|
296 |
+
ky = _sobel_ky.to(x.device, x.dtype).repeat(C, 1, 1, 1)
|
297 |
+
gx = F.conv2d(x, kx, padding=1, groups=C)
|
298 |
+
gy = F.conv2d(x, ky, padding=1, groups=C)
|
299 |
+
return torch.sqrt(gx * gx + gy * gy + 1e-12)
|
300 |
+
|
301 |
+
class MedianLossNormalizer:
|
302 |
+
def __init__(self, desired_ratios: dict, window_steps: int):
|
303 |
+
s = sum(desired_ratios.values())
|
304 |
+
self.ratios = {k: (v / s) if s > 0 else 0.0 for k, v in desired_ratios.items()}
|
305 |
+
self.buffers = {k: deque(maxlen=window_steps) for k in self.ratios.keys()}
|
306 |
+
self.window = window_steps
|
307 |
+
|
308 |
+
def update_and_total(self, abs_losses: dict):
|
309 |
+
for k, v in abs_losses.items():
|
310 |
+
if k in self.buffers:
|
311 |
+
self.buffers[k].append(float(v.detach().abs().cpu()))
|
312 |
+
meds = {k: (np.median(self.buffers[k]) if len(self.buffers[k]) > 0 else 1.0) for k in self.buffers}
|
313 |
+
coeffs = {k: (self.ratios[k] / max(meds[k], 1e-12)) for k in self.ratios}
|
314 |
+
total = sum(coeffs[k] * abs_losses[k] for k in abs_losses if k in coeffs)
|
315 |
+
return total, coeffs, meds
|
316 |
+
|
317 |
+
if full_training and not train_decoder_only:
|
318 |
+
loss_ratios["kl"] = float(kl_ratio)
|
319 |
+
normalizer = MedianLossNormalizer(loss_ratios, median_coeff_steps)
|
320 |
+
|
321 |
+
# --------------------------- Сэмплы ---------------------------
|
322 |
+
@torch.no_grad()
|
323 |
+
def get_fixed_samples(n=3):
|
324 |
+
idx = random.sample(range(len(dataset)), min(n, len(dataset)))
|
325 |
+
pil_imgs = [dataset[i] for i in idx]
|
326 |
+
tensors = []
|
327 |
+
for img in pil_imgs:
|
328 |
+
img = random_crop(img, high_resolution)
|
329 |
+
tensors.append(tfm(img))
|
330 |
+
return torch.stack(tensors).to(accelerator.device, dtype)
|
331 |
+
|
332 |
+
fixed_samples = get_fixed_samples()
|
333 |
+
|
334 |
+
@torch.no_grad()
|
335 |
+
def _to_pil_uint8(img_tensor: torch.Tensor) -> Image.Image:
|
336 |
+
arr = ((img_tensor.float().clamp(-1, 1) + 1.0) * 127.5).clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0)
|
337 |
+
return Image.fromarray(arr)
|
338 |
+
|
339 |
+
@torch.no_grad()
|
340 |
+
def generate_and_save_samples(step=None):
|
341 |
+
try:
|
342 |
+
temp_vae = accelerator.unwrap_model(vae).eval()
|
343 |
+
lpips_net = _get_lpips()
|
344 |
+
with torch.no_grad():
|
345 |
+
orig_high = fixed_samples
|
346 |
+
orig_low = F.interpolate(orig_high, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
347 |
+
model_dtype = next(temp_vae.parameters()).dtype
|
348 |
+
orig_low = orig_low.to(dtype=model_dtype)
|
349 |
+
|
350 |
+
# QWEN: добавляем T=1 на encode/decode и снимаем при сравнении
|
351 |
+
if is_qwen_vae(temp_vae):
|
352 |
+
x_in = orig_low.unsqueeze(2) # [B,3,1,H,W]
|
353 |
+
enc = temp_vae.encode(x_in)
|
354 |
+
latents_mean = enc.latent_dist.mean
|
355 |
+
dec = temp_vae.decode(latents_mean).sample # [B,3,1,H,W]
|
356 |
+
rec = dec.squeeze(2) # [B,3,H,W]
|
357 |
+
else:
|
358 |
+
enc = temp_vae.encode(orig_low)
|
359 |
+
latents_mean = enc.latent_dist.mean
|
360 |
+
rec = temp_vae.decode(latents_mean).sample
|
361 |
+
|
362 |
+
if rec.shape[-2:] != orig_high.shape[-2:]:
|
363 |
+
rec = F.interpolate(rec, size=orig_high.shape[-2:], mode="bilinear", align_corners=False)
|
364 |
+
|
365 |
+
first_real = _to_pil_uint8(orig_high[0])
|
366 |
+
first_dec = _to_pil_uint8(rec[0])
|
367 |
+
first_real.save(f"{generated_folder}/sample_real.jpg", quality=95)
|
368 |
+
first_dec.save(f"{generated_folder}/sample_decoded.jpg", quality=95)
|
369 |
+
|
370 |
+
for i in range(rec.shape[0]):
|
371 |
+
_to_pil_uint8(rec[i]).save(f"{generated_folder}/sample_{i}.jpg", quality=95)
|
372 |
+
|
373 |
+
lpips_scores = []
|
374 |
+
for i in range(rec.shape[0]):
|
375 |
+
orig_full = orig_high[i:i+1].to(torch.float32)
|
376 |
+
rec_full = rec[i:i+1].to(torch.float32)
|
377 |
+
if rec_full.shape[-2:] != orig_full.shape[-2:]:
|
378 |
+
rec_full = F.interpolate(rec_full, size=orig_full.shape[-2:], mode="bilinear", align_corners=False)
|
379 |
+
lpips_val = lpips_net(orig_full, rec_full).item()
|
380 |
+
lpips_scores.append(lpips_val)
|
381 |
+
avg_lpips = float(np.mean(lpips_scores))
|
382 |
+
|
383 |
+
if use_wandb and accelerator.is_main_process:
|
384 |
+
wandb.log({"lpips_mean": avg_lpips}, step=step)
|
385 |
+
finally:
|
386 |
+
gc.collect()
|
387 |
+
torch.cuda.empty_cache()
|
388 |
+
|
389 |
+
if accelerator.is_main_process and save_model:
|
390 |
+
print("Генерация сэмплов до старта обучения...")
|
391 |
+
generate_and_save_samples(0)
|
392 |
+
|
393 |
+
accelerator.wait_for_everyone()
|
394 |
+
|
395 |
+
# --------------------------- Тренировка ---------------------------
|
396 |
+
progress = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
|
397 |
+
global_step = 0
|
398 |
+
min_loss = float("inf")
|
399 |
+
sample_interval = max(1, total_steps // max(1, sample_interval_share * num_epochs))
|
400 |
+
|
401 |
+
for epoch in range(num_epochs):
|
402 |
+
vae.train()
|
403 |
+
batch_losses, batch_grads = [], []
|
404 |
+
track_losses = {k: [] for k in loss_ratios.keys()}
|
405 |
+
|
406 |
+
for imgs in dataloader:
|
407 |
+
with accelerator.accumulate(vae):
|
408 |
+
imgs = imgs.to(accelerator.device)
|
409 |
+
|
410 |
+
if high_resolution != model_resolution:
|
411 |
+
imgs_low = F.interpolate(imgs, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
412 |
+
else:
|
413 |
+
imgs_low = imgs
|
414 |
+
|
415 |
+
model_dtype = next(vae.parameters()).dtype
|
416 |
+
imgs_low_model = imgs_low.to(dtype=model_dtype) if imgs_low.dtype != model_dtype else imgs_low
|
417 |
+
|
418 |
+
# QWEN: encode/decode с T=1
|
419 |
+
if is_qwen_vae(vae):
|
420 |
+
x_in = imgs_low_model.unsqueeze(2) # [B,3,1,H,W]
|
421 |
+
enc = vae.encode(x_in)
|
422 |
+
latents = enc.latent_dist.mean if train_decoder_only else enc.latent_dist.sample()
|
423 |
+
dec = vae.decode(latents).sample # [B,3,1,H,W]
|
424 |
+
rec = dec.squeeze(2) # [B,3,H,W]
|
425 |
+
else:
|
426 |
+
enc = vae.encode(imgs_low_model)
|
427 |
+
latents = enc.latent_dist.mean if train_decoder_only else enc.latent_dist.sample()
|
428 |
+
rec = vae.decode(latents).sample
|
429 |
+
|
430 |
+
if rec.shape[-2:] != imgs.shape[-2:]:
|
431 |
+
rec = F.interpolate(rec, size=imgs.shape[-2:], mode="bilinear", align_corners=False)
|
432 |
+
|
433 |
+
rec_f32 = rec.to(torch.float32)
|
434 |
+
imgs_f32 = imgs.to(torch.float32)
|
435 |
+
|
436 |
+
abs_losses = {
|
437 |
+
"mae": F.l1_loss(rec_f32, imgs_f32),
|
438 |
+
"mse": F.mse_loss(rec_f32, imgs_f32),
|
439 |
+
"lpips": _get_lpips()(rec_f32, imgs_f32).mean(),
|
440 |
+
"edge": F.l1_loss(sobel_edges(rec_f32), sobel_edges(imgs_f32)),
|
441 |
+
}
|
442 |
+
|
443 |
+
if full_training and not train_decoder_only:
|
444 |
+
mean = enc.latent_dist.mean
|
445 |
+
logvar = enc.latent_dist.logvar
|
446 |
+
kl = -0.5 * torch.mean(1 + logvar - mean.pow(2) - logvar.exp())
|
447 |
+
abs_losses["kl"] = kl
|
448 |
+
else:
|
449 |
+
abs_losses["kl"] = torch.tensor(0.0, device=accelerator.device, dtype=torch.float32)
|
450 |
+
|
451 |
+
total_loss, coeffs, meds = normalizer.update_and_total(abs_losses)
|
452 |
+
|
453 |
+
if torch.isnan(total_loss) or torch.isinf(total_loss):
|
454 |
+
raise RuntimeError("NaN/Inf loss")
|
455 |
+
|
456 |
+
accelerator.backward(total_loss)
|
457 |
+
|
458 |
+
grad_norm = torch.tensor(0.0, device=accelerator.device)
|
459 |
+
if accelerator.sync_gradients:
|
460 |
+
grad_norm = accelerator.clip_grad_norm_(trainable_params, clip_grad_norm)
|
461 |
+
optimizer.step()
|
462 |
+
scheduler.step()
|
463 |
+
optimizer.zero_grad(set_to_none=True)
|
464 |
+
global_step += 1
|
465 |
+
progress.update(1)
|
466 |
+
|
467 |
+
if accelerator.is_main_process:
|
468 |
+
try:
|
469 |
+
current_lr = optimizer.param_groups[0]["lr"]
|
470 |
+
except Exception:
|
471 |
+
current_lr = scheduler.get_last_lr()[0]
|
472 |
+
|
473 |
+
batch_losses.append(total_loss.detach().item())
|
474 |
+
batch_grads.append(float(grad_norm.detach().cpu().item()) if isinstance(grad_norm, torch.Tensor) else float(grad_norm))
|
475 |
+
for k, v in abs_losses.items():
|
476 |
+
track_losses[k].append(float(v.detach().item()))
|
477 |
+
|
478 |
+
if use_wandb and accelerator.sync_gradients:
|
479 |
+
log_dict = {
|
480 |
+
"total_loss": float(total_loss.detach().item()),
|
481 |
+
"learning_rate": current_lr,
|
482 |
+
"epoch": epoch,
|
483 |
+
"grad_norm": batch_grads[-1],
|
484 |
+
"mode/train_decoder_only": int(train_decoder_only),
|
485 |
+
"mode/full_training": int(full_training),
|
486 |
+
}
|
487 |
+
for k, v in abs_losses.items():
|
488 |
+
log_dict[f"loss_{k}"] = float(v.detach().item())
|
489 |
+
for k in coeffs:
|
490 |
+
log_dict[f"coeff_{k}"] = float(coeffs[k])
|
491 |
+
log_dict[f"median_{k}"] = float(meds[k])
|
492 |
+
wandb.log(log_dict, step=global_step)
|
493 |
+
|
494 |
+
if global_step > 0 and global_step % sample_interval == 0:
|
495 |
+
if accelerator.is_main_process:
|
496 |
+
generate_and_save_samples(global_step)
|
497 |
+
accelerator.wait_for_everyone()
|
498 |
+
|
499 |
+
n_micro = sample_interval * gradient_accumulation_steps
|
500 |
+
avg_loss = float(np.mean(batch_losses[-n_micro:])) if len(batch_losses) >= n_micro else float(np.mean(batch_losses)) if batch_losses else float("nan")
|
501 |
+
avg_grad = float(np.mean(batch_grads[-n_micro:])) if len(batch_grads) >= 1 else float(np.mean(batch_grads)) if batch_grads else 0.0
|
502 |
+
|
503 |
+
if accelerator.is_main_process:
|
504 |
+
print(f"Epoch {epoch} step {global_step} loss: {avg_loss:.6f}, grad_norm: {avg_grad:.6f}, lr: {current_lr:.9f}")
|
505 |
+
if save_model and avg_loss < min_loss * save_barrier:
|
506 |
+
min_loss = avg_loss
|
507 |
+
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
508 |
+
if use_wandb:
|
509 |
+
wandb.log({"interm_loss": avg_loss, "interm_grad": avg_grad}, step=global_step)
|
510 |
+
|
511 |
+
if accelerator.is_main_process:
|
512 |
+
epoch_avg = float(np.mean(batch_losses)) if batch_losses else float("nan")
|
513 |
+
print(f"Epoch {epoch} done, avg loss {epoch_avg:.6f}")
|
514 |
+
if use_wandb:
|
515 |
+
wandb.log({"epoch_loss": epoch_avg, "epoch": epoch + 1}, step=global_step)
|
516 |
+
|
517 |
+
# --------------------------- Финальное сохранение ---------------------------
|
518 |
+
if accelerator.is_main_process:
|
519 |
+
print("Training finished – saving final model")
|
520 |
+
if save_model:
|
521 |
+
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
522 |
+
|
523 |
+
accelerator.free_memory()
|
524 |
+
if torch.distributed.is_initialized():
|
525 |
+
torch.distributed.destroy_process_group()
|
526 |
+
print("Готово!")
|
vaetest/001_all.png
ADDED
![]() |
Git LFS Details
|
vaetest/001_decoded_FLUX.1_schnell_vae.png
ADDED
![]() |
Git LFS Details
|
vaetest/001_decoded_simple_vae.png
ADDED
![]() |
Git LFS Details
|
vaetest/001_decoded_simple_vae2.png
ADDED
![]() |
Git LFS Details
|
vaetest/001_decoded_simple_vae_nightly.png
ADDED
![]() |
Git LFS Details
|
vaetest/001_orig.png
ADDED
![]() |
Git LFS Details
|
vaetest/002_all.png
ADDED
![]() |
Git LFS Details
|
vaetest/002_decoded_FLUX.1_schnell_vae.png
ADDED
![]() |
Git LFS Details
|
vaetest/002_decoded_simple_vae.png
ADDED
![]() |
Git LFS Details
|
vaetest/002_decoded_simple_vae2.png
ADDED
![]() |
Git LFS Details
|
vaetest/002_decoded_simple_vae_nightly.png
ADDED
![]() |
Git LFS Details
|
vaetest/002_orig.png
ADDED
![]() |
Git LFS Details
|