See axolotl config
axolotl version: 0.6.0
base_model: mistralai/Mistral-7B-v0.1
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/UFOs-Pretraining-V1.1
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: AiAF/pretraining.jsonl
type: completion
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out/v1.1
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
max_steps: 100000
wandb_project: "UFO_LLM_Pretraining"
wandb_entity:
wandb_watch: "all"
wandb_name: "UFO_LLM_Pretraining-V1.1"
wandb_log_model: "false"
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
UFOs-Pretraining-V1.1
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the AiAF/pretraining.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 1.7822
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 90
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7686 | 0.1111 | 1 | 1.6895 |
2.0582 | 0.3333 | 3 | 1.6884 |
1.9134 | 0.6667 | 6 | 1.6791 |
1.8262 | 1.0 | 9 | 1.6672 |
1.875 | 1.3333 | 12 | 1.6578 |
1.8751 | 1.6667 | 15 | 1.6501 |
1.8375 | 2.0 | 18 | 1.6471 |
1.7018 | 2.3333 | 21 | 1.6587 |
1.398 | 2.6667 | 24 | 1.6508 |
1.6955 | 3.0 | 27 | 1.6577 |
1.4222 | 3.3333 | 30 | 1.6812 |
1.264 | 3.6667 | 33 | 1.6664 |
1.4261 | 4.0 | 36 | 1.6827 |
1.2406 | 4.3333 | 39 | 1.7099 |
1.2105 | 4.6667 | 42 | 1.7099 |
1.3733 | 5.0 | 45 | 1.7162 |
1.2441 | 5.3333 | 48 | 1.7490 |
1.1755 | 5.6667 | 51 | 1.7440 |
1.2253 | 6.0 | 54 | 1.7394 |
1.1223 | 6.3333 | 57 | 1.7542 |
1.1837 | 6.6667 | 60 | 1.7679 |
0.9838 | 7.0 | 63 | 1.7670 |
1.1613 | 7.3333 | 66 | 1.7693 |
1.1775 | 7.6667 | 69 | 1.7753 |
0.8999 | 8.0 | 72 | 1.7796 |
1.1617 | 8.3333 | 75 | 1.7813 |
1.1119 | 8.6667 | 78 | 1.7819 |
1.1191 | 9.0 | 81 | 1.7825 |
1.0606 | 9.3333 | 84 | 1.7821 |
1.1476 | 9.6667 | 87 | 1.7820 |
1.0837 | 10.0 | 90 | 1.7822 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for AiAF/UFOs-Pretraining-V1.1
Base model
mistralai/Mistral-7B-v0.1