Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: mistralai/Mistral-7B-v0.1
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/UFOs-Pretraining-V1.1

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: AiAF/pretraining.jsonl
    type: completion

dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out/v1.1

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

max_steps: 100000

wandb_project: "UFO_LLM_Pretraining"
wandb_entity:
wandb_watch: "all"
wandb_name: "UFO_LLM_Pretraining-V1.1"
wandb_log_model: "false"

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: 
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:


UFOs-Pretraining-V1.1

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the AiAF/pretraining.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7822

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 90

Training results

Training Loss Epoch Step Validation Loss
1.7686 0.1111 1 1.6895
2.0582 0.3333 3 1.6884
1.9134 0.6667 6 1.6791
1.8262 1.0 9 1.6672
1.875 1.3333 12 1.6578
1.8751 1.6667 15 1.6501
1.8375 2.0 18 1.6471
1.7018 2.3333 21 1.6587
1.398 2.6667 24 1.6508
1.6955 3.0 27 1.6577
1.4222 3.3333 30 1.6812
1.264 3.6667 33 1.6664
1.4261 4.0 36 1.6827
1.2406 4.3333 39 1.7099
1.2105 4.6667 42 1.7099
1.3733 5.0 45 1.7162
1.2441 5.3333 48 1.7490
1.1755 5.6667 51 1.7440
1.2253 6.0 54 1.7394
1.1223 6.3333 57 1.7542
1.1837 6.6667 60 1.7679
0.9838 7.0 63 1.7670
1.1613 7.3333 66 1.7693
1.1775 7.6667 69 1.7753
0.8999 8.0 72 1.7796
1.1617 8.3333 75 1.7813
1.1119 8.6667 78 1.7819
1.1191 9.0 81 1.7825
1.0606 9.3333 84 1.7821
1.1476 9.6667 87 1.7820
1.0837 10.0 90 1.7822

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for AiAF/UFOs-Pretraining-V1.1

Finetuned
(834)
this model

Dataset used to train AiAF/UFOs-Pretraining-V1.1