See axolotl config
axolotl version: 0.6.0
base_model: mistralai/Mistral-7B-v0.1
# optionally might have model_type or tokenizer_type
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/UFOs-Mistral-7B-v0.1-V4
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
#chat_template: none
datasets:
- path: AiAF/input_output_master_list.json
type: input_output
train_on_inputs: True
# datasets:
# - path: AiAF/master_list_jsonl
# type: chat_template
# field_messages: conversations
# message_field_role: from
# message_field_content: value
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qlora-out
## You can optionally freeze the entire model and unfreeze a subset of parameters
unfrozen_parameters:
# - ^lm_head.weight$
# - ^model.embed_tokens.weight$[:32000]
# - model.layers.2[0-9]+.block_sparse_moe.gate
# - model.layers.2[0-9]+.block_sparse_moe.experts
# - model.layers.3[0-9]+.block_sparse_moe.gate
# - model.layers.3[0-9]+.block_sparse_moe.experts
model_config:
output_router_logits: true
adapter: qlora
lora_model_dir:
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
#lora_target_modules:
# - gate
# - q_proj
# - k_proj
# - v_proj
# - o_proj
# - w1
# - w2
# - w3
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
UFOs-Mistral-7B-v0.1-V4
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the AiAF/input_output_master_list.json dataset. It achieves the following results on the evaluation set:
- Loss: 2.0053
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 14
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.755 | 1.0 | 500 | 2.0053 |
Framework versions
- PEFT 0.14.0
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for AiAF/UFOs-Mistral-7B-v0.1-V4
Base model
mistralai/Mistral-7B-v0.1