Requirements:
You can run this model on Google Colab Pro, it requires a substantial amount of VRAM.
!pip install -q -U bitsandbytes !pip install -q -U git+https://github.com/huggingface/transformers.git !pip install -q -U git+https://github.com/huggingface/peft.git !pip install -q -U git+https://github.com/huggingface/accelerate.git
Import this model using:
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "AhmedBou/databricks-dolly-v2-3b_on_NCSS"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
Inference using:
batch = tokenizer("Multiple Regression for Appraisal -->: ", return_tensors='pt')
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=50)
print("\n\n", tokenizer.decode(output_tokens[0], skip_special_tokens=True))
Output:
“Multiple Regression for Appraisal” -->: Multiple Regression for Appraisal (MRA) -->: Multiple Regression for Appraisal (MRA) (with Covariates) -->: Multiple Regression for Appraisal (MRA) (with Covariates)
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.