File size: 1,478 Bytes
de7c47f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: mit
language:
- en
metrics:
- accuracy
library_name: sklearn
tags:
- Traffic
- ML
- Random-forest
- Classification
- Scikit-learn
---
# Traffic Prediction Model
## Model Description
This model is a **Random Forest Classifier** trained to predict **traffic conditions** based on various input features.
It helps estimate traffic congestion levels using structured data such as **time of day, weather, and historical patterns**.
## Training Details
- **Algorithm**: Random Forest Classifier
- **Dataset**: Custom traffic dataset
- **Preprocessing**: Label encoding for categorical variables
- **Framework**: scikit-learn
## How to Use
To use this model, install the required libraries and download the model from Hugging Face.
To load and use the model:
```python
import joblib
from huggingface_hub import hf_hub_download
# Download model
model_path = hf_hub_download(repo_id="AhaseesAI/traffic-prediction", filename="traffic_classifier.pkl")
encoder_path = hf_hub_download(repo_id="AhaseesAI/traffic-prediction", filename="target_encoder.pkl")
# Load model
model = joblib.load(model_path)
target_encoder = joblib.load(encoder_path)
# Example prediction
sample_data = [[value1, value2, value3, ...]] # Replace with actual feature values
prediction = model.predict(sample_data)
# Convert prediction to original label
predicted_label = target_encoder.inverse_transform(prediction)
print(f"Predicted Traffic Status: {predicted_label[0]}")
|