Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
library_name: sklearn
|
8 |
+
tags:
|
9 |
+
- Traffic
|
10 |
+
- ML
|
11 |
+
- Random-forest
|
12 |
+
- Classification
|
13 |
+
- Scikit-learn
|
14 |
+
---
|
15 |
+
# Traffic Prediction Model
|
16 |
+
|
17 |
+
## Model Description
|
18 |
+
This model is a **Random Forest Classifier** trained to predict **traffic conditions** based on various input features.
|
19 |
+
It helps estimate traffic congestion levels using structured data such as **time of day, weather, and historical patterns**.
|
20 |
+
|
21 |
+
## Training Details
|
22 |
+
- **Algorithm**: Random Forest Classifier
|
23 |
+
- **Dataset**: Custom traffic dataset
|
24 |
+
- **Preprocessing**: Label encoding for categorical variables
|
25 |
+
- **Framework**: scikit-learn
|
26 |
+
|
27 |
+
## How to Use
|
28 |
+
To use this model, install the required libraries and download the model from Hugging Face.
|
29 |
+
|
30 |
+
To load and use the model:
|
31 |
+
```python
|
32 |
+
import joblib
|
33 |
+
from huggingface_hub import hf_hub_download
|
34 |
+
|
35 |
+
# Download model
|
36 |
+
model_path = hf_hub_download(repo_id="AhaseesAI/traffic-prediction", filename="traffic_classifier.pkl")
|
37 |
+
encoder_path = hf_hub_download(repo_id="AhaseesAI/traffic-prediction", filename="target_encoder.pkl")
|
38 |
+
|
39 |
+
# Load model
|
40 |
+
model = joblib.load(model_path)
|
41 |
+
target_encoder = joblib.load(encoder_path)
|
42 |
+
|
43 |
+
# Example prediction
|
44 |
+
sample_data = [[value1, value2, value3, ...]] # Replace with actual feature values
|
45 |
+
prediction = model.predict(sample_data)
|
46 |
+
|
47 |
+
# Convert prediction to original label
|
48 |
+
predicted_label = target_encoder.inverse_transform(prediction)
|
49 |
+
print(f"Predicted Traffic Status: {predicted_label[0]}")
|