AhaseesAI commited on
Commit
de7c47f
·
verified ·
1 Parent(s): cfb9338

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -0
README.md ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ metrics:
6
+ - accuracy
7
+ library_name: sklearn
8
+ tags:
9
+ - Traffic
10
+ - ML
11
+ - Random-forest
12
+ - Classification
13
+ - Scikit-learn
14
+ ---
15
+ # Traffic Prediction Model
16
+
17
+ ## Model Description
18
+ This model is a **Random Forest Classifier** trained to predict **traffic conditions** based on various input features.
19
+ It helps estimate traffic congestion levels using structured data such as **time of day, weather, and historical patterns**.
20
+
21
+ ## Training Details
22
+ - **Algorithm**: Random Forest Classifier
23
+ - **Dataset**: Custom traffic dataset
24
+ - **Preprocessing**: Label encoding for categorical variables
25
+ - **Framework**: scikit-learn
26
+
27
+ ## How to Use
28
+ To use this model, install the required libraries and download the model from Hugging Face.
29
+
30
+ To load and use the model:
31
+ ```python
32
+ import joblib
33
+ from huggingface_hub import hf_hub_download
34
+
35
+ # Download model
36
+ model_path = hf_hub_download(repo_id="AhaseesAI/traffic-prediction", filename="traffic_classifier.pkl")
37
+ encoder_path = hf_hub_download(repo_id="AhaseesAI/traffic-prediction", filename="target_encoder.pkl")
38
+
39
+ # Load model
40
+ model = joblib.load(model_path)
41
+ target_encoder = joblib.load(encoder_path)
42
+
43
+ # Example prediction
44
+ sample_data = [[value1, value2, value3, ...]] # Replace with actual feature values
45
+ prediction = model.predict(sample_data)
46
+
47
+ # Convert prediction to original label
48
+ predicted_label = target_encoder.inverse_transform(prediction)
49
+ print(f"Predicted Traffic Status: {predicted_label[0]}")