greetings-classifier

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0007
  • Accuracy: 0.9998

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0019 1.0 3899 0.0007 0.9998

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
31
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for AdrienB134/greetings-classifier

Finetuned
(7399)
this model

Space using AdrienB134/greetings-classifier 1