autoevaluator
HF staff
Add evaluation results on the amazon_polarity config and test split of amazon_polarity
0b77715
license: apache-2.0 | |
datasets: | |
- amazon_polarity | |
metrics: | |
- accuracy | |
- f1 | |
base_model: distilbert-base-uncased | |
model-index: | |
- name: distilbert-base-uncased-finetuned-emotion-balanced | |
results: | |
- task: | |
type: text-classification | |
name: Text Classification | |
dataset: | |
name: amazon_polarity | |
type: sentiment | |
args: default | |
metrics: | |
- type: accuracy | |
value: 0.958 | |
name: Accuracy | |
- type: loss | |
value: 0.119 | |
name: Loss | |
- type: f1 | |
value: 0.957 | |
name: F1 | |
- task: | |
type: text-classification | |
name: Text Classification | |
dataset: | |
name: amazon_polarity | |
type: amazon_polarity | |
config: amazon_polarity | |
split: test | |
metrics: | |
- type: accuracy | |
value: 0.94112 | |
name: Accuracy | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzlmMzdhYjNmN2U0NDBkM2U5ZDgwNzc3YjE1OGE4MWUxMDY1N2U0ODc0YzllODE5ODIyMzdkOWFhNzVjYmI5MyIsInZlcnNpb24iOjF9.3nlcLa4IpPQtklp7_U9XzC__Q_JVf_cWs6JVVII8trhX5zg_q9HEyQOQs4sRf6O-lIJg8zb3mgobZDJShuSJAQ | |
- type: precision | |
value: 0.9321570625232675 | |
name: Precision | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjI2MDY4NGNlYjhjMGMxODBiNTc2ZjM5YzY1NjkxNTU4MDA2ZDIyY2QyZjUyZmE4YWY0N2Y1ODU5YTc2ZDM0NiIsInZlcnNpb24iOjF9.egEikTa2UyHV6SAGkHJKaa8FRwGHoZmJRCmqUQaJqeF5yxkz2V-WeCHoWDrCXsHCbXEs8UhLlyo7Lr83BPfkBg | |
- type: recall | |
value: 0.95149 | |
name: Recall | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2E3M2Y3MDU4ZTM2YjdlZjQ0NTY3NGYwMmQ3NTk5ZmZkZWUwZWZiZDZjNjk2ZWE5MmY4MmZiM2FmN2U2M2QyNCIsInZlcnNpb24iOjF9.4VNbiWRmSee4cxuIZ5m7bN30i4BpK7xtHQ1BF8AuFIXkWQgzOmGdX35bLhLGWW8KL3ClA4RDPVBKYCIrw0YUBw | |
- type: auc | |
value: 0.9849019044624999 | |
name: AUC | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTkwODk2ZTUwOTViNjBhYTU0ODk1MDA3MDY1NDkyZDc2YmRlNTQzNDE3YmE3YTVkYjNhN2JmMDAxZWQ0NjUxZSIsInZlcnNpb24iOjF9.YEr6OhqOL7QnqYqjUTQFMdkgU_uS1-vVnkJtn_-1UwSoX754UV_bL9S9KSH3DX4m5QFoRXdZxfeOocm1JbzaCA | |
- type: f1 | |
value: 0.9417243188138998 | |
name: F1 | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzIyMmViNTQ3ZGU0M2I5ZmRjOGI1OWMwZGEwYmE5OGU5YTZlZTkzZjdkOTQ4YzJmOTc2MDliMDY4NDQ1NGRlNyIsInZlcnNpb24iOjF9.p05MGHTfHTAzp4u-qfiIn6Zmh5c3TW_uwjXWgbb982pL_oCILQb6jFXqhPpWXL321fPye7qaUVbGhcTJd8sdCA | |
- type: loss | |
value: 0.16342754662036896 | |
name: loss | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzgxMDc4M2IxYjhkNjRhZmYyNzY1MTNkNzhmYjk2NmU1NjFiOTk1NDIzNzI1ZGU3MDYyYjQ2YmQ1NTI2N2NhMyIsInZlcnNpb24iOjF9.Zuf0nzn8XdvwRChKtE9CwJ0pgpc6Zey6oTR3jRiSkvNY2sNbo2bvAgFimGzgGYkDvRvYkTCXzCyxdb27l3QnAg | |
# distilbert-sentiment | |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on a subset of the [amazon-polarity dataset](https://huggingface.co/datasets/amazon_polarity). | |
It achieves the following results on the evaluation set: | |
- Loss: 0.119 | |
- Accuracy: 0.958 | |
- F1_score: 0.957 | |
## Model description | |
This sentiment classifier has been trained on 180_000 samples for the training set, 20_000 samples for the validation set and 20_000 samples for the test set. | |
## Intended uses & limitations | |
```python | |
from transformers import pipeline | |
# Create the pipeline | |
sentiment_classifier = pipeline('text-classification', model='AdamCodd/distilbert-base-uncased-finetuned-sentiment-amazon') | |
# Now you can use the pipeline to classify emotions | |
result = sentiment_classifier("This product doesn't fit me at all.") | |
print(result) | |
#[{'label': 'negative', 'score': 0.9994848966598511}] | |
``` | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 3e-05 | |
- train_batch_size: 32 | |
- eval_batch_size: 32 | |
- seed: 1270 | |
- optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- lr_scheduler_warmup_steps: 150 | |
- num_epochs: 2 | |
- weight_decay: 0.01 | |
### Training results | |
| key | value | | |
| --- | ----- | | |
| eval_loss | 0.119 | | |
| eval_accuracy | 0.958 | | |
| eval_f1_score | 0.957 | | |
### Framework versions | |
- Transformers 4.34.0 | |
- Pytorch lightning 2.0.9 | |
- Tokenizers 0.13.3 |