|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- resumes_t2json_large |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-base-finetuned-resumes_t2json_large |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: resumes_t2json_large |
|
type: resumes_t2json_large |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 4.3177 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-base-finetuned-resumes_t2json_large |
|
|
|
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the resumes_t2json_large dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
- Rouge1: 4.3177 |
|
- Rouge2: 1.1704 |
|
- Rougel: 3.5786 |
|
- Rougelsum: 3.7496 |
|
- Gen Len: 18.4438 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 0.0 | 1.0 | 10280 | nan | 4.3177 | 1.1704 | 3.5786 | 3.7496 | 18.4438 | |
|
| 0.0 | 2.0 | 20560 | nan | 4.3177 | 1.1704 | 3.5786 | 3.7496 | 18.4438 | |
|
| 0.0 | 3.0 | 30840 | nan | 4.3177 | 1.1704 | 3.5786 | 3.7496 | 18.4438 | |
|
| 0.0 | 4.0 | 41120 | nan | 4.3177 | 1.1704 | 3.5786 | 3.7496 | 18.4438 | |
|
| 0.0 | 5.0 | 51400 | nan | 4.3177 | 1.1704 | 3.5786 | 3.7496 | 18.4438 | |
|
| 0.0 | 6.0 | 61680 | nan | 4.3177 | 1.1704 | 3.5786 | 3.7496 | 18.4438 | |
|
| 0.0 | 7.0 | 71960 | nan | 4.3177 | 1.1704 | 3.5786 | 3.7496 | 18.4438 | |
|
| 0.0 | 8.0 | 82240 | nan | 4.3177 | 1.1704 | 3.5786 | 3.7496 | 18.4438 | |
|
| 0.0 | 9.0 | 92520 | nan | 4.3177 | 1.1704 | 3.5786 | 3.7496 | 18.4438 | |
|
| 0.0 | 10.0 | 102800 | nan | 4.3177 | 1.1704 | 3.5786 | 3.7496 | 18.4438 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 2.0.0+cu117 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.12.1 |
|
|