Paraphrase_indicBERT_onfull_FT3
This model is a fine-tuned version of ai4bharat/indic-bert on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0320
- Accuracy: 0.789
- F1: 0.7885
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.4638638566821256e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 14
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.5707 | 1.0 | 157 | 0.5842 | 0.6895 | 0.6630 |
0.4831 | 2.0 | 314 | 0.5444 | 0.7435 | 0.7420 |
0.4363 | 3.0 | 471 | 0.4700 | 0.775 | 0.7730 |
0.3548 | 4.0 | 628 | 0.4781 | 0.7765 | 0.7763 |
0.2468 | 5.0 | 785 | 0.5416 | 0.786 | 0.7858 |
0.2046 | 6.0 | 942 | 0.6293 | 0.7775 | 0.7768 |
0.127 | 7.0 | 1099 | 0.6558 | 0.7815 | 0.7802 |
0.1042 | 8.0 | 1256 | 0.9524 | 0.742 | 0.7381 |
0.0653 | 9.0 | 1413 | 1.0619 | 0.7485 | 0.7450 |
0.0253 | 10.0 | 1570 | 1.0320 | 0.789 | 0.7885 |
0.0405 | 11.0 | 1727 | 1.1028 | 0.7795 | 0.7794 |
0.0106 | 12.0 | 1884 | 1.1150 | 0.784 | 0.7840 |
0.0098 | 13.0 | 2041 | 1.1362 | 0.785 | 0.7850 |
0.0331 | 14.0 | 2198 | 1.1453 | 0.785 | 0.7850 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Abhi964/Paraphrase_indicBERT_onfull_FT3
Base model
ai4bharat/indic-bert