Paraphrase_indicBERT_onfull_FT3

This model is a fine-tuned version of ai4bharat/indic-bert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0320
  • Accuracy: 0.789
  • F1: 0.7885

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.4638638566821256e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.5707 1.0 157 0.5842 0.6895 0.6630
0.4831 2.0 314 0.5444 0.7435 0.7420
0.4363 3.0 471 0.4700 0.775 0.7730
0.3548 4.0 628 0.4781 0.7765 0.7763
0.2468 5.0 785 0.5416 0.786 0.7858
0.2046 6.0 942 0.6293 0.7775 0.7768
0.127 7.0 1099 0.6558 0.7815 0.7802
0.1042 8.0 1256 0.9524 0.742 0.7381
0.0653 9.0 1413 1.0619 0.7485 0.7450
0.0253 10.0 1570 1.0320 0.789 0.7885
0.0405 11.0 1727 1.1028 0.7795 0.7794
0.0106 12.0 1884 1.1150 0.784 0.7840
0.0098 13.0 2041 1.1362 0.785 0.7850
0.0331 14.0 2198 1.1453 0.785 0.7850

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Abhi964/Paraphrase_indicBERT_onfull_FT3

Finetuned
(31)
this model