LLAMA3.2 Nepali 318M Model
Overview
This is a 318M parameter LLAMA3.2 model fine-tuned on a Nepali text dataset. The model is designed for generating coherent and contextually relevant Nepali text.
Resources
- Training Code: GitHub Repository
- Chat Interface: Hugging Face Space
- Dataset: IRIISNEPAL/Nepali-Text-Corpus and nepberta
- Reference Book: Build a Large Language Model (From Scratch) by Sebastian Raschka, PhD
Installation
To install the required dependencies, run:
pip install datasets huggingface_hub matplotlib transformers torch --quiet
Usage
1. Download Model Weights
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="Aananda-giri/LLAMA3-Nepali", filename="parameters_300m/model_pg_398000_steps.pth", local_dir="./")
2. Load the Tokenizer
from transformers import PreTrainedTokenizerFast
tokenizer = PreTrainedTokenizerFast.from_pretrained("Aananda-giri/LLAMA3-Nepali")
tokenizer.save_pretrained("NepaliBPE")
3. Download Additional Scripts
import requests
res=requests.get(r"https://raw.githubusercontent.com/Aananda-giri/LLAMA3-Nepali/main/4.%20inference/2_inference/previous_chapters.py")
with open('previous_chapters.py', 'w') as f:
f.write(res.text)
4. Load the Model
import torch
from previous_chapters import Llama3Model, ChatFormat, Tokenizer, generate_and_print_sample
# Initialize tokenizer
_tokenizer = Tokenizer("NepaliBPE/tokenizer.json")
chat_tokenizer = ChatFormat(_tokenizer)
# Define model configuration
LLAMA32_CONFIG = {
"vocab_size": 50006,
"context_length": 512,
"emb_dim": 1320,
"n_heads": 20,
"n_layers": 10,
"hidden_dim": 5280,
"n_kv_groups": 5,
"rope_base": 500_000.0,
"dtype": torch.bfloat16,
"rope_freq": {
"factor": 32.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_context_length": 8192,
}
}
# Adjust RoPE Scaling
old_context_length = 131_072
new_context_length = LLAMA32_CONFIG["context_length"]
LLAMA32_CONFIG["rope_base"] *= new_context_length / old_context_length
# Load Model
model = Llama3Model(LLAMA32_CONFIG)
model.eval()
# Optimize model if PyTorch 2.0 is available
if torch.__version__ >= "2.0":
model = torch.compile(model)
5. Load Model Weights
# Move model to device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print(f'device: {device}')
# Load checkpoint
latest_model_checkpoint = "parameters_300m/model_pg_398000_steps.pth"
checkpoint = torch.load(latest_model_checkpoint, map_location=device, weights_only=False)
model.load_state_dict(checkpoint["model_state_dict"])
6. Generate Text
# Generate text sample
generate_and_print_sample(
PROMPT="रामले भात",
tokenizer=_tokenizer,
chat_tokenizer=chat_tokenizer,
model=model,
device=device,
context_length=LLAMA32_CONFIG["context_length"]
)
Advanced Text Generation
from previous_chapters import generate_chat_optimized
import time
start_time = time.time()
output_text = generate_chat_optimized(
prompt="रामले भात",
tokenizer=tokenizer,
chat_tokenizer=chat_tokenizer,
model=model,
max_new_tokens=20,
context_size=512,
device=device,
temperature=0.3,
top_k=5,
top_p=None,
eos_id=None,
repetition_penalty=1.2,
penalize_len_below=10,
batch_size=1 # Added parameter
)
print(f"time:{time.time() - start_time}\n output_text: {output_text}")
Model Checkpoints
The best-performing checkpoint is parameters_300m/model_pg_398000_steps.pth. Additionally, other folders contain experimental checkpoints from various training runs.
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no library tag.