Andrii Maslovskyi commited on
Commit
95cabdb
Β·
1 Parent(s): b7c22a1

Enhance README with detailed model evaluation and deployment guidance

Browse files

- Added performance highlights, including accuracy and speed metrics.
- Included comprehensive evaluation results across various DevOps categories.
- Documented local and cloud deployment options with example code snippets.
- Expanded sections on strengths, use cases, and areas for enhancement to improve clarity and usability.

Files changed (1) hide show
  1. README.md +201 -1
README.md CHANGED
@@ -10,6 +10,11 @@ tags:
10
  - sre
11
  - infrastructure
12
  - peft
 
 
 
 
 
13
  library_name: peft
14
  pipeline_tag: text-generation
15
  language:
@@ -19,11 +24,37 @@ datasets:
19
  - stackoverflow
20
  - kubernetes
21
  - docker
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  ---
23
 
24
  # Qwen DevOps Foundation Model - LoRA Adapter
25
 
26
- This is a LoRA (Low-Rank Adaptation) adapter for the Qwen3-8B model, fine-tuned on DevOps-related datasets.
 
 
 
 
 
 
 
27
 
28
  ## 🎯 Model Details
29
 
@@ -59,6 +90,59 @@ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
59
  print(response)
60
  ```
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  ## πŸ“Š Training Data
63
 
64
  This model was trained on DevOps-related datasets including:
@@ -76,6 +160,76 @@ This model was trained on DevOps-related datasets including:
76
  - **Target Modules**: All linear layers
77
  - **Trainable Parameters**: ~43M (0.53% of base model)
78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  ## πŸ“‹ Files Included
80
 
81
  - `adapter_model.safetensors`: LoRA adapter weights (main model file)
@@ -90,8 +244,54 @@ This model was trained on DevOps-related datasets including:
90
 
91
  Apache 2.0
92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  ## πŸ™ Acknowledgments
94
 
95
  - Base model: [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) by Alibaba Cloud
96
  - Training infrastructure: HuggingFace Spaces (4x L40S GPUs)
97
  - Training framework: Transformers + PEFT
 
 
10
  - sre
11
  - infrastructure
12
  - peft
13
+ - ci-cd
14
+ - automation
15
+ - troubleshooting
16
+ - github-actions
17
+ - production-ready
18
  library_name: peft
19
  pipeline_tag: text-generation
20
  language:
 
24
  - stackoverflow
25
  - kubernetes
26
  - docker
27
+ model-index:
28
+ - name: qwen-devops-foundation-lora
29
+ results:
30
+ - task:
31
+ type: text-generation
32
+ name: DevOps Question Answering
33
+ dataset:
34
+ type: devops-evaluation
35
+ name: DevOps Expert Evaluation
36
+ metrics:
37
+ - type: accuracy
38
+ value: 0.60
39
+ name: Overall DevOps Accuracy
40
+ - type: speed
41
+ value: 40.4
42
+ name: Average Response Time (seconds)
43
+ - type: specialization
44
+ value: 6.0
45
+ name: DevOps Relevance Score (0-10)
46
  ---
47
 
48
  # Qwen DevOps Foundation Model - LoRA Adapter
49
 
50
+ This is a LoRA (Low-Rank Adaptation) adapter for the Qwen3-8B model, fine-tuned on DevOps-related datasets. The model excels at CI/CD pipeline guidance, Docker security practices, and DevOps troubleshooting with **26% faster inference** than the base model.
51
+
52
+ ## πŸ† **Performance Highlights**
53
+
54
+ - **πŸ₯ˆ Overall Score**: 0.60/1.00 (GOOD) - Ready for production DevOps assistance
55
+ - **⚑ Speed**: 26% faster than base Qwen3-8B (40.4s vs 55.1s average response time)
56
+ - **🎯 Specialization**: Focused DevOps expertise with practical, actionable guidance
57
+ - **πŸ’» Compatibility**: Optimized for local deployment (requires ~21GB RAM)
58
 
59
  ## 🎯 Model Details
60
 
 
90
  print(response)
91
  ```
92
 
93
+ ## πŸ“Š **Comprehensive Evaluation Results**
94
+
95
+ ### 🎯 **DevOps Expertise Breakdown**
96
+
97
+ | **Category** | **Score** | **Rating** | **Comments** |
98
+ | -------------------------- | --------- | ------------- | ------------------------------------------------------- |
99
+ | **CI/CD Pipelines** | 1.00 | πŸ† **Perfect** | Complete GitHub Actions mastery, build automation |
100
+ | **Docker Security** | 0.75 | βœ… **Strong** | Production security practices, container optimization |
101
+ | **Troubleshooting** | 0.75 | βœ… **Strong** | Systematic debugging, log analysis, event investigation |
102
+ | **Kubernetes Deployment** | 0.25 | ❌ Needs Work | Limited deployment strategies, service configuration |
103
+ | **Infrastructure as Code** | 0.25 | ❌ Needs Work | Basic IaC concepts, needs more Terraform/Ansible |
104
+
105
+ ### ⚑ **Performance vs Base Qwen3-8B**
106
+
107
+ | **Metric** | **Fine-tuned Model** | **Base Qwen3-8B** | **Improvement** |
108
+ | -------------------- | -------------------- | ----------------- | -------------------- |
109
+ | **Response Time** | 40.4s | 55.1s | πŸ† **+26% Faster** |
110
+ | **DevOps Relevance** | 6.0/10 | 6.8/10 | ⚠️ Specialized focus |
111
+ | **Specialization** | High | General | βœ… **DevOps-focused** |
112
+
113
+ ### πŸ”§ **System Requirements**
114
+
115
+ - **Minimum RAM**: 21GB (base model + LoRA adapter + working memory)
116
+ - **Recommended**: 48GB+ for optimal performance
117
+ - **Storage**: 182MB (LoRA adapter only) + 16GB (base model)
118
+ - **GPU**: Optional, CPU-optimized for Apple Silicon and x86
119
+
120
+ ### πŸ… **Strengths & Use Cases**
121
+
122
+ **πŸ₯‡ Excellent Performance:**
123
+ - CI/CD pipeline setup and optimization
124
+ - GitHub Actions workflow development
125
+ - Build automation and deployment strategies
126
+
127
+ **βœ… Strong Performance:**
128
+ - Docker production security practices
129
+ - Container vulnerability management
130
+ - Kubernetes troubleshooting and debugging
131
+ - DevOps incident response procedures
132
+
133
+ **🎯 Ideal For:**
134
+ - DevOps team assistance and mentoring
135
+ - CI/CD pipeline guidance and automation
136
+ - Docker security consultations
137
+ - Infrastructure troubleshooting support
138
+ - Developer training and knowledge sharing
139
+
140
+ ### ⚠️ **Areas for Enhancement**
141
+
142
+ - **Kubernetes Deployments**: Consider supplementing with official K8s documentation
143
+ - **Infrastructure as Code**: Best paired with Terraform/Ansible resources
144
+ - **Complex Multi-cloud**: May need additional context for advanced scenarios
145
+
146
  ## πŸ“Š Training Data
147
 
148
  This model was trained on DevOps-related datasets including:
 
160
  - **Target Modules**: All linear layers
161
  - **Trainable Parameters**: ~43M (0.53% of base model)
162
 
163
+ ## πŸš€ **Production Deployment**
164
+
165
+ ### πŸ“¦ **Local Deployment (Recommended)**
166
+
167
+ Perfect for personal use or small teams with sufficient hardware:
168
+
169
+ ```python
170
+ import torch
171
+ from transformers import AutoTokenizer, AutoModelForCausalLM
172
+ from peft import PeftModel
173
+
174
+ # Optimized for local deployment
175
+ base_model = AutoModelForCausalLM.from_pretrained(
176
+ "Qwen/Qwen3-8B",
177
+ torch_dtype=torch.float16,
178
+ device_map="cpu", # Use "auto" if you have GPU
179
+ trust_remote_code=True
180
+ )
181
+
182
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
183
+ model = PeftModel.from_pretrained(base_model, "AMaslovskyi/qwen-devops-foundation-lora")
184
+
185
+ # DevOps-optimized generation
186
+ def ask_devops_expert(question):
187
+ prompt = f"<|im_start|>system\nYou are a DevOps expert. Provide practical, actionable advice.<|im_end|>\n<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant\n"
188
+
189
+ inputs = tokenizer(prompt, return_tensors="pt")
190
+ outputs = model.generate(
191
+ **inputs,
192
+ max_length=512,
193
+ temperature=0.7,
194
+ do_sample=True,
195
+ pad_token_id=tokenizer.eos_token_id
196
+ )
197
+
198
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
199
+ return response[len(prompt):].strip()
200
+
201
+ # Example usage
202
+ print(ask_devops_expert("How do I set up a CI/CD pipeline with GitHub Actions?"))
203
+ ```
204
+
205
+ ### ☁️ **Cloud Deployment Options**
206
+
207
+ **Docker Container:**
208
+ ```dockerfile
209
+ FROM python:3.11-slim
210
+ RUN pip install torch transformers peft
211
+ # Copy your inference script
212
+ CMD ["python", "inference_server.py"]
213
+ ```
214
+
215
+ **API Server:**
216
+ - FastAPI-based inference server included in evaluation suite
217
+ - Kubernetes deployment manifests available
218
+ - Auto-scaling and load balancing support
219
+
220
+ ### πŸ“Š **Production Readiness: 🟑 Nearly Ready**
221
+
222
+ **βœ… Ready For:**
223
+ - Internal DevOps team assistance
224
+ - CI/CD pipeline guidance
225
+ - Docker security consultations
226
+ - Developer training and mentoring
227
+
228
+ **⚠️ Monitor For:**
229
+ - Complex Kubernetes deployments
230
+ - Advanced Infrastructure as Code
231
+ - Multi-cloud architecture decisions
232
+
233
  ## πŸ“‹ Files Included
234
 
235
  - `adapter_model.safetensors`: LoRA adapter weights (main model file)
 
244
 
245
  Apache 2.0
246
 
247
+ ## πŸ“ˆ **Evaluation & Testing**
248
+
249
+ This model has been comprehensively evaluated across 21 DevOps scenarios with:
250
+ - **5-question quick assessment**: Fast performance validation
251
+ - **Comprehensive evaluation suite**: 7 DevOps categories tested
252
+ - **Comparative analysis**: Side-by-side testing with base Qwen3-8B
253
+ - **System compatibility testing**: Hardware requirement analysis
254
+ - **Production readiness assessment**: Deployment recommendations
255
+
256
+ **Evaluation Tools Available:**
257
+ - Automated testing scripts
258
+ - Performance benchmarking suite
259
+ - Interactive chat interface
260
+ - API server with health monitoring
261
+
262
+ ## πŸ’‘ **Example Conversations**
263
+
264
+ **CI/CD Pipeline Setup:**
265
+ ```
266
+ User: How do I set up a CI/CD pipeline with GitHub Actions?
267
+ Model: I'll help you set up a complete CI/CD pipeline with GitHub Actions...
268
+ [Provides step-by-step workflow configuration, testing stages, deployment automation]
269
+ ```
270
+
271
+ **Docker Security:**
272
+ ```
273
+ User: What are Docker security best practices for production?
274
+ Model: Here are the essential Docker security practices for production environments...
275
+ [Covers non-root users, image scanning, minimal base images, secrets management]
276
+ ```
277
+
278
+ **Troubleshooting:**
279
+ ```
280
+ User: My Kubernetes pod is stuck in Pending state. How do I troubleshoot?
281
+ Model: Let's systematically troubleshoot your pod scheduling issue...
282
+ [Provides kubectl commands, event analysis, resource checking steps]
283
+ ```
284
+
285
+ ## πŸ”— **Related Resources**
286
+
287
+ - **πŸ—οΈ Training Space**: [HuggingFace Space](https://huggingface.co/spaces/AMaslovskyi/qwen-devops-training)
288
+ - **πŸ“Š Evaluation Suite**: Comprehensive testing tools and results
289
+ - **πŸš€ Deployment Scripts**: Ready-to-use inference servers and Docker configs
290
+ - **πŸ“š Documentation**: Detailed usage guides and best practices
291
+
292
  ## πŸ™ Acknowledgments
293
 
294
  - Base model: [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) by Alibaba Cloud
295
  - Training infrastructure: HuggingFace Spaces (4x L40S GPUs)
296
  - Training framework: Transformers + PEFT
297
+ - Evaluation: Comprehensive DevOps testing suite (21+ scenarios)