|
--- |
|
license: apache-2.0 |
|
tags: |
|
- vision |
|
- image-classification |
|
datasets: |
|
- dmitva/the-mnist-database |
|
inference: true |
|
pipeline_tag: image-classification |
|
widget: |
|
- text: "Enter image URL" |
|
example: https://miro.medium.com/v2/resize:fit:720/format:webp/1*w7pBsjI3t3ZP-4Gdog-JdQ.png |
|
--- |
|
|
|
The MNIST OCR (Optical Character Recognition) model is a deep learning model trained to recognise and classify handwritten digits from 0 to 9. This model is trained on the MNIST dataset, which consists of 60,000 small square 28×28 pixel grayscale images of handwritten single digits, making it highly accurate for recognising written, isolated digits in a similar style to those found in the training set. |
|
|
|
 |
|
|
|
### Install Packages |
|
|
|
```sh |
|
pip install numpy opencv-python requests pillow transformers tensorflow |
|
``` |
|
|
|
### Usage |
|
|
|
```python |
|
import os |
|
os.environ["KERAS_BACKEND"] = "tensorflow" |
|
|
|
import keras |
|
import numpy as np |
|
import cv2 |
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
from typing import List, Optional |
|
from huggingface_hub import hf_hub_download |
|
import tensorflow as tf |
|
import pickle |
|
|
|
class ImageTokenizer: |
|
def __init__(self): |
|
self.unique_pixels = set() |
|
self.pixel_to_token = {} |
|
self.token_to_pixel = {} |
|
|
|
def fit(self, images): |
|
for image in images: |
|
self.unique_pixels.update(np.unique(image)) |
|
self.pixel_to_token = {pixel: i for i, pixel in enumerate(sorted(self.unique_pixels))} |
|
self.token_to_pixel = {i: pixel for pixel, i in self.pixel_to_token.items()} |
|
|
|
def tokenize(self, images): |
|
return np.vectorize(self.pixel_to_token.get)(images) |
|
|
|
def detokenize(self, tokens): |
|
return np.vectorize(self.token_to_pixel.get)(tokens) |
|
|
|
class MNISTPredictor: |
|
def __init__(self, model_name): |
|
# Download the model and tokenizer files |
|
model_path = hf_hub_download(repo_id=model_name, filename="mnist_model.keras") |
|
tokenizer_path = hf_hub_download(repo_id=model_name, filename="mnist_tokenizer.pkl") |
|
|
|
# Load the model and tokenizer |
|
self.model = keras.models.load_model(model_path) |
|
with open(tokenizer_path, 'rb') as tokenizer_file: |
|
self.tokenizer = pickle.load(tokenizer_file) |
|
|
|
def extract_features(self, image: Image.Image) -> List[np.ndarray]: |
|
"""Extract features from the image for multiple digits.""" |
|
# Convert to grayscale |
|
gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY) |
|
|
|
# Apply Gaussian blur |
|
blurred = cv2.GaussianBlur(gray, (5, 5), 0) |
|
|
|
# Apply adaptive thresholding |
|
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2) |
|
|
|
# Find contours |
|
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
digit_images = [] |
|
for contour in contours: |
|
# Filter small contours |
|
if cv2.contourArea(contour) > 50: # Adjust this threshold as needed |
|
x, y, w, h = cv2.boundingRect(contour) |
|
roi = thresh[y:y+h, x:x+w] |
|
resized = cv2.resize(roi, (28, 28), interpolation=cv2.INTER_AREA) |
|
digit_images.append(resized.reshape((28, 28, 1)).astype('float32') / 255) |
|
|
|
return digit_images |
|
|
|
def predict(self, image: Image.Image) -> Optional[List[int]]: |
|
"""Predict digits in the image.""" |
|
try: |
|
digit_images = self.extract_features(image) |
|
tokenized_images = [self.tokenizer.tokenize(img) for img in digit_images] |
|
predictions = self.model.predict(np.array(tokenized_images), verbose=0) |
|
return np.argmax(predictions, axis=1).tolist() |
|
except Exception as e: |
|
print(f"Error during prediction: {e}") |
|
return None |
|
|
|
def download_image(url: str) -> Optional[Image.Image]: |
|
"""Download an image from a URL.""" |
|
try: |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
return Image.open(BytesIO(response.content)) |
|
except Exception as e: |
|
print(f"Error downloading image: {e}") |
|
return None |
|
|
|
def save_predictions_to_file(predictions: List[int], output_path: str) -> None: |
|
"""Save predictions to a text file.""" |
|
try: |
|
with open(output_path, 'w') as f: |
|
f.write(f"Predicted digits are: {', '.join(map(str, predictions))}\n") |
|
except Exception as e: |
|
print(f"Error saving predictions to file: {e}") |
|
|
|
def main(image_url: str, model_name: str, output_path: str) -> None: |
|
try: |
|
predictor = MNISTPredictor(model_name) |
|
|
|
# Download image |
|
image = download_image(image_url) |
|
if image is None: |
|
raise Exception("Failed to download image") |
|
|
|
print(f"Image downloaded successfully.") |
|
|
|
# Predict digits |
|
digits = predictor.predict(image) |
|
if digits is not None: |
|
print(f"Predicted digits are: {digits}") |
|
|
|
# Save predictions to file |
|
save_predictions_to_file(digits, output_path) |
|
print(f"Predictions saved to {output_path}") |
|
else: |
|
print("Failed to predict digits.") |
|
except Exception as e: |
|
print(f"An error occurred: {e}") |
|
|
|
if __name__ == "__main__": |
|
image_url = "https://miro.medium.com/v2/resize:fit:720/format:webp/1*w7pBsjI3t3ZP-4Gdog-JdQ.png" |
|
model_name = "0xnu/mnist-ocr" |
|
output_path = "predictions.txt" |
|
|
|
main(image_url, model_name, output_path) |
|
``` |
|
|
|
### Copyright |
|
|
|
(c) 2024 [Finbarrs Oketunji](https://finbarrs.eu). All Rights Reserved. |
|
|