|
--- |
|
library_name: peft |
|
license: llama3.2 |
|
base_model: meta-llama/Llama-3.2-1B-Instruct |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: llama-fine-tuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama-fine-tuned |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3503 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.6035 | 0.0357 | 50 | 0.9702 | |
|
| 0.6392 | 0.0714 | 100 | 0.6272 | |
|
| 0.5979 | 0.1071 | 150 | 0.5398 | |
|
| 0.5629 | 0.1429 | 200 | 0.5044 | |
|
| 0.4761 | 0.1786 | 250 | 0.4689 | |
|
| 0.4998 | 0.2143 | 300 | 0.4494 | |
|
| 0.4363 | 0.25 | 350 | 0.4524 | |
|
| 0.4433 | 0.2857 | 400 | 0.4322 | |
|
| 0.4882 | 0.3214 | 450 | 0.4135 | |
|
| 0.4316 | 0.3571 | 500 | 0.4017 | |
|
| 0.389 | 0.3929 | 550 | 0.3951 | |
|
| 0.4041 | 0.4286 | 600 | 0.3908 | |
|
| 0.456 | 0.4643 | 650 | 0.3860 | |
|
| 0.3872 | 0.5 | 700 | 0.3788 | |
|
| 0.3962 | 0.5357 | 750 | 0.3792 | |
|
| 0.3524 | 0.5714 | 800 | 0.3762 | |
|
| 0.3409 | 0.6071 | 850 | 0.3700 | |
|
| 0.421 | 0.6429 | 900 | 0.3746 | |
|
| 0.349 | 0.6786 | 950 | 0.3634 | |
|
| 0.4194 | 0.7143 | 1000 | 0.3665 | |
|
| 0.3621 | 0.75 | 1050 | 0.3607 | |
|
| 0.3663 | 0.7857 | 1100 | 0.3603 | |
|
| 0.3434 | 0.8214 | 1150 | 0.3592 | |
|
| 0.3609 | 0.8571 | 1200 | 0.3553 | |
|
| 0.342 | 0.8929 | 1250 | 0.3524 | |
|
| 0.3889 | 0.9286 | 1300 | 0.3513 | |
|
| 0.3604 | 0.9643 | 1350 | 0.3508 | |
|
| 0.354 | 1.0 | 1400 | 0.3503 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.13.2 |
|
- Transformers 4.47.0 |
|
- Pytorch 2.5.1+cu121 |
|
- Tokenizers 0.21.0 |