Model Card for VIT Geometric Shapes Dataset Tiny

Training Dataset

Base Model

Accuracy

  • Accuracy on dataset 0-ma/geometric-shapes [test] : 0.9138095238095238

Loading and using the model

import numpy as np
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForImageClassification 
import requests
labels =  [
    "None",
    "Circle",
    "Triangle",
    "Square",
    "Pentagon",
    "Hexagon"
] 
images = [Image.open(requests.get("https://raw.githubusercontent.com/0-ma/geometric-shape-detector/main/input/exemple_circle.jpg", stream=True).raw), 
        Image.open(requests.get("https://raw.githubusercontent.com/0-ma/geometric-shape-detector/main/input/exemple_pentagone.jpg", stream=True).raw)]
feature_extractor = AutoImageProcessor.from_pretrained('0-ma/vit-geometric-shapes-tiny')
model = AutoModelForImageClassification.from_pretrained('0-ma/vit-geometric-shapes-tiny')
inputs = feature_extractor(images=images, return_tensors="pt")
logits = model(**inputs)['logits'].cpu().detach().numpy()
predictions = np.argmax(logits, axis=1)    
predicted_labels = [labels[prediction] for prediction in predictions]
print(predicted_labels)

Model generation

The model has been created using the 'train_shape_detector.py.py' of the project from the project https://github.com/0-ma/geometric-shape-detector. No external code sources were used.

Downloads last month
36
Safetensors
Model size
5.53M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for 0-ma/vit-geometric-shapes-tiny

Finetuned
(15)
this model

Dataset used to train 0-ma/vit-geometric-shapes-tiny

Space using 0-ma/vit-geometric-shapes-tiny 1