zzzmahesh commited on
Commit
a242e04
·
verified ·
1 Parent(s): c8fc2d9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -175
README.md CHANGED
@@ -1,199 +1,88 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
 
 
 
 
 
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
 
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ tags:
3
+ - int8
4
+ - w8a8
5
+ - text-generation
6
+ language:
7
+ - en
8
+ pipeline_tag: text-generation
9
+ license: llama3.1
10
+ base_model: meta-llama/Meta-Llama-3-8B-Instruct
11
  ---
12
 
13
+ # Meta-Llama-3-8B-Instruct-quantized.w4a4
14
 
15
+ ## Model Overview
16
+ - **Model Architecture:** Meta-Llama-3
17
+ - **Input:** Text
18
+ - **Output:** Text
19
+ - **Model Optimizations:**
20
+ - **Weight and Activation Quantization:** INT8 (W8A8)
21
+ - **Intended Use Cases:** Intended for commercial and research use across multiple languages, designed to function as an assistant-like chat model.
22
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
23
+ - **Release Date:** 9/2024
24
+ - **Version:** 1.0
25
+ - **License(s):** Llama3.1
26
+ - **Model Developers:** Mahesh Yaddanapudi
27
 
28
+ Quantized version of [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). This model is optimized using weight and activation quantization to INT8, drastically reducing memory usage and enabling deployment on extremely resource-constrained environments.
29
 
30
+ ### Model Optimizations
31
 
32
+ This model was obtained by quantizing the weights and activations of [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) to INT8 (W8A8) data type. This optimization reduces the number of bits per parameter and activation from 16 to 8, significantly reducing disk size and memory requirements.
33
 
34
+ The weights and activations of the linear operators within transformers blocks are quantized using the [GPTQ](https://arxiv.org/abs/2210.17323) algorithm, which applies symmetric per-channel quantization with a 1% damping factor and 256 sequences of 8,192 random tokens.
35
 
36
+ ## Deployment
37
 
38
+ This model can be deployed efficiently using various backends compatible with INT8 models, as shown in the example below.
39
 
40
+ ```python
41
+ from transformers import AutoModelForCausalLM, AutoTokenizer
 
 
 
 
 
42
 
43
+ model_id = "zzzmahesh/Meta-Llama-3-8B-Instruct-quantized.w8a8"
44
 
45
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
46
+ model = AutoModelForCausalLM.from_pretrained(
47
+ model_id,
48
+ device_map="auto",
49
+ low_cpu_mem_usage=True
50
+ )
51
 
52
+ prompt = "What are the benefits of model quantization in AI?"
53
+ inputs = tokenizer(prompt, return_tensors="pt")
54
+ outputs = model.generate(**inputs)
55
 
56
+ print(tokenizer.decode(outputs[0]))
57
+ ```
58
 
59
+ ## Creation
60
 
61
+ This model was created by using the GPTQ quantization method as implemented in the AutoGPTQ library, as demonstrated in the code snippet below.
62
 
63
+ ```python
64
+ from transformers import AutoTokenizer
65
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
66
+ import random
67
 
68
+ model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
69
 
70
+ # Create random examples for quantization calibration
71
+ num_samples = 256
72
+ max_seq_len = 8192
73
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
74
+ max_token_id = len(tokenizer.get_vocab()) - 1
75
+ examples = [{"input_ids": [random.randint(0, max_token_id) for _ in range(max_seq_len)], "attention_mask": max_seq_len * [1]} for _ in range(num_samples)]
76
 
77
+ # Define quantization configuration for W8A8
78
+ quantize_config = BaseQuantizeConfig(bits=8, group_size=-1, desc_act=True, model_file_base_name="model", damp_percent=0.01)
79
 
80
+ # Load and quantize the model
81
+ model = AutoGPTQForCausalLM.from_pretrained(model_id, quantize_config, device_map="auto")
82
+ model.quantize(examples)
83
+ model.save_pretrained("Meta-Llama-3-8B-Instruct-quantized.w8a8")
84
+ ```
85
 
86
+ ## Future Work
87
 
88
+ Further evaluations are planned to compare this quantized model with its unquantized and higher-bit quantized counterparts, especially on benchmarks relevant to code generation and logical reasoning tasks.